当前位置:首页 > 文献频道 > 临床内科学 > 文献详细

《外科学其他》

阻塞性黄疸肠屏障功能变化研究进展

发表时间:2010-02-08  浏览次数:647次

阻塞性黄疸肠屏障功能变化研究进展作者:周玉坤 综述,秦环龙 审校    作者单位:上海交通大学附属第六人民医院 普外科,上海 200233    【摘要】  阻塞性黄疸最重要的病理基础是肠黏膜屏障损伤导致的内毒素血症,肠黏膜屏障损伤机制十分复杂,近年来对于胆汁及其成分的作用、氧化应激及炎性介质的影响、肠道微生态的变化方面取得了一定的进展,本文将对此作一综述。    【关键词】  黄疸,阻塞性;肠黏膜屏障;胆红素;氧化应激;综述文献    阻塞性黄疸(阻黄)是临床上十分常见的疾病,常死于败血症和肾功能衰竭。肠黏膜屏障损伤引起细菌及内毒素循门静脉入血,进而引起炎性细胞因子的“瀑布样”效应,形成所谓“肠源性脓毒症”。其中胆红素、胆汁及胆汁酸盐、氧化应激、炎性介质、肠道微生态改变与肠屏障的改变有密切关系,研究阻黄肠黏膜屏障损伤及有效的防治机制具有十分重要的意义。1 胆红素与肠道屏障  生理剂量的胆红素是一种抗氧化剂,有利于维持体内氧化还原平衡。但血液中高浓度胆红素尤其是未结合胆红素存在明显的毒性,胆红素通过阻断细胞线粒体的氧利用,使线粒体氧化磷酸化的偶联作用解离以达到细胞毒作用,有关胆红素的毒性在新生儿核黄疸中进行了大量研究,不再赘述。实验性阻塞性黄疸会导致肠黏膜屏障破坏,引起紧密连接蛋白(occludin,ZO-1)表达降低,而胆汁可恢复其表达。Assimakopoulos 研究发现阻黄大鼠肠黏膜上皮细胞occludin蛋白的表达明显减少,尤以小肠绒毛的上1/3部分为甚。作者认为有以下几个方面引起occludin表达改变:①内毒素及各种细胞因子的释放破坏了肠黏膜屏障。②致病性大肠杆菌数量增多,同时肠黏膜上阻止细菌黏附的分泌性IgA明显减少,细菌黏附到肠黏膜上,使occludin与紧密连接分离。③小肠腔内氧化/抗氧化平衡被打破后,氧化应激会导致occludin与紧密连接分离,小肠绒毛的上1/3部分细胞氧化应激凋亡或坏死,所以occludin在小肠绒毛的上1/3部分表达减少[1]。该作者进一步研究发现阻黄可以导致Claudin-4在小肠绒毛的上1/3部分表达增加,加入蛙皮素和神经降压肽后,门脉内毒素水平及Claudin-4表达恢复正常。作者推测阻黄时黏膜通透性增加与occludin表达降低、Claudin-4表达升高有关[2]。有研究认为Claudin-4在紧密连接中表达增加会导致肠黏膜通透性增加[3]。Raimondi 通过体外细胞培养,研究了未结合胆红素对肠屏障的影响。将人单层结肠上皮细胞caco-2和纯化未结合胆红素一起培养,发现未结合胆红素可以降低跨膜电阻(TEER),增加荧光右旋糖苷的细胞旁通透性,导致紧密连接处occludin分布减少,这些变化与胆红素呈剂量依赖性;当未结合胆红素在5~200 nmol/L范围时,不影响细胞活力。但当剂量超过600 nmol/L,则导致细胞不可逆损伤、出现凋亡或坏死。而结合胆红素则对细胞无影响[4]。2 胆汁及胆汁酸盐与肠道屏障  阻黄会导致肠黏膜萎缩、小肠隐窝上皮细胞凋亡,肠屏障破坏。补充胆汁可显著改善肠屏障,Yang建立阻黄模型,96 h后处死大鼠取肠黏膜上皮及系膜淋巴结,采用Western blot技术标志ZO-1及occludin的分布表达,与假手术组相比,阻黄组小肠黏膜的通透性和细菌移位显著增加,ZO-1及occludin表达降低,喂饲新鲜胆汁(每天2次)可明显改善肠黏膜屏障。同时体外实验证实胆汁可通过提高细胞外信号调节激酶(ERK)磷酸化而增加ZO-1及occludin的表达[5]。Ogata等认为胆汁可以较好地减少阻黄肠腔致病菌数量、保护肠黏膜屏障、阻止细菌移位,而单用脱氧胆酸虽可减少肠腔致病菌数量,但在维持肠黏膜屏障方面作用不大[6]。已知肠道中的胆汁酸或胆汁酸盐可以阻止阻黄大鼠细菌移位,并抑制乳酸菌、硫酸盐还原菌、链球菌等的生长,缺乏胆汁酸盐会导致肠腔菌群失调,并导致革兰氏阴性菌的生长,胆汁酸盐还有去垢剂样作用,能导致细菌膜通透性增加进而引起细菌裂解[7],同时胆汁酸盐可直接与肠腔内细菌、内毒素结合形成复合物排除体外。Erbil 则在阻黄动物实验中发现单独服用乳果糖、胆酸钠、谷氨酰胺均可减少细菌移位,其中谷氨酰胺维护肠黏膜屏障作用最明显[8]。胆道阻塞引起肠黏膜损伤及细菌繁殖移位,服用胆汁酸或应用胆汁酸受体(FXR)促进剂会防止这些不良反应[9],单层培养的Caco-2的肠黏膜上皮细胞,用非致病性大肠杆菌共刺激后,观察初级结合胆酸和卵磷脂对肠黏膜屏障的影响,结果初级结合胆酸可明显降低内毒素穿透肠上皮细胞,并抑制多种炎性细胞因子的释放,且呈剂量依赖性。初级结合胆酸通过与内毒素结合形成微囊从而改善肠黏膜屏障的通透性,而卵磷脂对初级胆酸起协同作用[10]。体外实验证实胆汁酸可促进肠上皮细胞的增殖,生理剂量下的牛磺脱氧胆酸通过激活核转录因子(NF)-κB及其介导的凋亡抑制基因(XIAP)来促进肠上皮细胞生长、抑制上皮细胞凋亡[11],另外牛磺脱氧胆酸还可能通过诱导C-myc蛋白表达刺激肠上皮细胞生长[12]。3 氧化应激与肠道屏障  氧化应激 (oxidatives tress)是指机体组织或细胞内氧自由基生成增加和(或)清除能力降低,导致活性氧(reactive oxygen species,ROS)家族在体内或细胞内蓄积而引起的氧化损伤过程。阻黄导致的细菌移位、内毒素血症及大量的炎性介质,使得肠腔及体内产生大量的活性氧。活性氧可以通过抑制线粒体产生ATP、刺激线粒体释放细胞色素C引起Caspases家族的活化,从而触发细胞凋亡发生的级联反应。活性氧还通过促进紧密连接蛋白酪氨酸磷酸化或诱导肌动蛋白解聚合作用来破坏肠黏膜屏障。Assimakopoulos检测大鼠阻黄10 d后各组门静脉血中内毒素水平,同时取小肠组织检测脂质过氧化、蛋白氧化、氧化还原态,发现肠黏膜绒毛密度降低,黏膜变薄,淋巴结细菌移位;血中内毒素水平增高,脂质过氧化及蛋白氧化增加,氧化还原态失平衡,说明实验性阻黄导致小肠氧化应激,进而引起肠黏膜屏障损伤及内毒素血症[13],临床实验也证实了阻黄患者存在明显的小肠氧化应激及肠黏膜损伤[14]。蛙皮素(bombesin)和神经降压肽(NT)或者应用抗氧化剂乙酰半胱氨酸(N-acetylcysteine)、别嘌呤醇、维生素E可显著改善实验性阻黄氧化应激,保护肠黏膜屏障、促进小肠隐窝上皮细胞增生[15-16],抗凝血酶Ⅲ(AT-III)可抑制阻黄血浆-氧化氮水平及肾组织中-氧化氮合酶(iNOS)的水平,对抗氧化应激状态[17]。Kamata最早研究发现活性氧离子通过丝裂原活化蛋白激酶(MAP)途径阻滞细胞生长,通过细胞色素C激活caspase家族,引起细胞凋亡[18]。体外Caco-2细胞培养提示氧化应激通过提高occludin,ZO-1,E-cadherin及beta-catenin酪氨酸磷酸化水平,进而破坏肠黏膜屏障,使用染料木素(Genistein,一种酪氨酸蛋白激酶抑制剂),可缓解氧化应激的这一影响[19]。体外试验中,人单层结肠上皮细胞caco-2加入丁基过氧化氢(t-BuOOH),一种脂质过氧化反应诱导剂,发现低浓度的t-BuOOH可以通过引起过氧化反应参与紧密连接蛋白的开放,高浓度的t-BuOOH可以促进Rho123(玫瑰精,一种P-glycoprotein作用底物)穿透肠黏膜屏障,叶黄素和胆绿素可以有助于抵消t-BuOOH引起的P-glycoprotein抑制作用,总之,抗氧化剂如叶黄素、胆绿素可以恢复t-BuOOH引起的P-glycoprotein抑制作用及肠黏膜通透性的增加[20]。Banan A.应用H2O2刺激体外培养的Caco-2细胞,发现细胞骨架微管蛋白表达减少、分布异常,加入表皮生长因子(EGF)可恢复正常的细胞骨架,作者还认为H2O2是通过NF-kB的激活及其I-kBα的抑制来发挥作用[21]。4 炎性介质与免疫屏障  Sano在实验性阻黄中发现,胆汁内引流组空、回肠黏膜固有层CD4(+) and CD8(+) T淋巴细跑和地址素细胞黏附分子(MAdCAM-1)阳性细胞明显高于胆汁外引流组和阻黄组,而且淋巴结内细菌数量亦明显减少。说明肠腔内胆汁的出现可以改善淋巴细胞的归巢[22]。Ogawa在实验性阻黄中发现派尔淋巴集结内B淋巴细胞数量明显减少,可能通过Toll-like receptors-2(TLR-2)提高Fas介导的细胞凋亡所致[23]。Arai在体外中性粒细胞培养液中加入胆红素后,可明显抑制中性粒细胞释放活性氧(ROS),同时杀菌作用减弱[24]。既往研究明确胆汁中含有的IgA或其他特异性、非特异性抗体可保护肠黏膜、结合细菌或病毒。Wells体外细胞培养发现胆汁本身含有的各种抗体可以阻止致病菌侵犯肠上皮细胞,从而阻止细菌移位[25]。阻黄导致白细胞噬菌作用下降、H2O2过量,在胆汁引流后,这一异常得到改善,而且内引流优于外引流[26]。阻黄导致外周血白细胞蛋白激酶C(PKC)活性增加,且与血浆总胆红素水平及白细胞可溶性IL-2受体表达呈正相关,说明PKC参与白细胞免疫调控,并可作为判断病情的一个指标[27]。阻黄导致机体内过量的内毒素会诱导产生大量炎性细胞因子如:TNF-α、IL-1、IL-6、INF-γ还有NO、氧自由基,这些炎性因子会破坏紧密连接的结构和功能,尤其是TNF-α和INF-γ可使occludin表达下调[28]。TNF-α刺激体外培养的Caco-2细胞导致通透性增加,乳酸菌可通过阻断ERK,进而抑制IL-8分泌,保护肠黏膜屏障[29],Tian报道乌司他丁在阻黄的早期可明显降低阻黄大鼠体内内毒素水平,保护肠黏膜,改善肠黏膜屏障的通透性[30]。Sheen-Chen则报道胰岛素样生长因子(IGF-I)可降低阻黄大鼠肝细胞凋亡[31],阻黄1周后大鼠肠上皮细胞增殖细胞核抗原(PCNA)表达明显升高。而两周后PCNA表达水平逐渐低于假手术组,口服谷氨酸可明显增加PCNA表达[32]。5 肠道微生态改变  已知胆管阻塞,肠道内缺乏胆酸、胆盐和分泌型IgA,使得肠道内革兰氏阴性菌过度生长、内毒素吸收增加,细菌移位发生,Parks研究阻黄大鼠1周后,肠道微环境变化集中在末端回肠,黏膜厚度、绒毛高度及隐窝深度均较对照组明显恶化,电镜检查显示组织水肿、炎细胞轻度浸润,上皮细胞间桥粒破坏、空隙增大,细胞质空泡形成、线粒体肿胀,黏膜表面附着细菌增多,组织内移位细菌主要为埃希氏菌属大肠杆菌[33]。Geyik 研究发现口服布拉酵母菌除了能改善阻黄大鼠肠道菌群,促进肠道黏膜产生分泌型IgA,还可明显修复小肠黏膜,降低致病菌移位,移位到组织中的细菌以大肠杆菌为主,其余依次为:克雷伯菌、阴沟肠杆菌、奇异变形杆菌[34]。肠道微生态破坏后,致病性大肠杆菌生长过度,大肠杆菌可导致occludin脱离紧密连接从而破坏黏膜屏障[35]。Parks临床研究发现阻黄患者手术减黄组血浆内毒素抗体低于非手术减黄组,同时可溶性肿瘤坏死因子受体升高,肠通透性增加,说明外科手术干预会破坏肠道屏障、抑制机体免疫反应[36]。Akin 认为阻黄大鼠导致肠道细菌过度繁殖及细菌移位,高压氧疗会改善这种情况[37]。Fukuoka 临床研究发现阻黄胆汁外引流会导致肠道黏膜固有层CD8+ T细胞及CD68+巨噬细胞减少,CD4+ T细胞却没有变化[38]。Sheen-Chen提示大鼠小肠黏膜黏附分子CD4+在阻黄1周后短暂升高,2周后明显下降,口服谷氨酸盐后得以恢复[39]。Sugawara给肝门胆管癌的黄疸患者围手术期服用益生菌,结果发现益生菌不仅能改善肠黏膜屏障和肠道微生态,还使手术感染率从30%降至12.1%,所有手术病人均痊愈出院[40]。6 展望  尽管对于阻黄的肠屏障研究已经取得了很大进展,但由于肠道内成分复杂,机体内存在复杂的炎性反应机制,体外实验研究往往不能完全解释所有临床现象。进一步揭示肠道屏障的损伤机制及可能采取的预防措施具有十分重要的意义。【参考文献】  [1] Assimakopoulos SF, Scopa CD, Charonis A, et al. Experimental obstructive jaundice disrupts intestinal mucosal barrier by altering occludin expression: beneficial effect of bombesin and neurotensin[J]. J Am Coll Surg,2004,198(5):748-757.  [2] Assimakopoulos SF, Vagianos CE, Charonis A, et al. Experimental obstructive jaundice alters claudin-4 expression in intestinal mucosa: effect of bombesin and neurotensin[J]. World J Gastroenterol,2006,12(21):3410-3415.  [3] Tamagawa H, Takahashi I, Furuse M, et al. Characteristics of claudin expression in follicle-associated epithelium of Peyer’s patches:preferential localization of claudin-4 at the apex of thedome region[J]. Lab Invest,2003,83(7):1045-1053.  [4] Raimondi F, Crivaro V, Capasso L, et al. Unconjugated bilirubin modulates the intestinal epithelial barrier function in a human-derived in vitro model[J]. Pediatr Res,2006,60(1):30-33.  [5] Yang R, Harada T, Li J, et al. Bile modulates intestinal epithelial barrier function via an extracellular signal related kinase 1/2 dependent mechanism[J]. Intensive Care Med,2005,31(5):709-717.  [6] Ogata Y, Nishi M, Nakayama H, et al. Role of bile in intestinal barrier function and its inhibitory effect on bacterial translocation in obstructive jaundice in rats[J]. J Surg Res,2003,115(1):18-23.  [7] Bron PA, Marco M, Hoffer SM, et al. Genetic characterization of the bile salt response in Lactobacillus plantarum and analysis of responsive promoters in vitro and in situ in the gastrointestinal tract[J]. J Bacteriol,2004,186(23):7829-7835.  [8] Erbil Y, Berber E, Ozarmagan S, et al. The effects of sodium deoxycholate, lactulose and glutamine on bacterial translocation in common bile duct ligated rats[J]. Hepatogastroenterology,1999,46(29):2791-2795.  [9] Inagaki T, Moschetta A, Lee YK, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor[J]. Proc Natl Acad Sci,2006,103(10):3920-3925.  [10] Parlesak A, Schaeckeler S, Moser L, et al. Conjugated primary bile salts reduce permeability of endotoxin through intestinal epithelial cells and synergize with phosphatidylcholine in suppression of inflammatory cytokine production[J]. Crit Care Med,2007,35(10):2367-2374.  [11] Turner DJ, Alaish SM, Zou T, et al. Bile salts induce resistance to apoptosis through NF-?资appa B-mediated XIAP expression[J]. Ann Surg,2007,245(3):415-425.  [12] Yamaguchi J, Toledo A, Bass BL, et al. Taurodeoxycholate increases intestinal epithelial cell proliferation through c-myc expression[J]. Surgery,2004,135(2):215-221.  [13] Assimakopoulos SF, Vagianos CE, Patsoukis N, et al. Evidence for intestinal oxidative stress in obstructive jaundice-induced gut barrier dysfunction in rats[J]. Acta Physiol Scand, 2004,180(2):177-185  [14] Assimakopoulos SF, Thomopoulos KC, Patsoukis N, et al. Evidence for intestinal oxidative stress in patients with obstructive jaundice[J]. Eur J Clin Invest,2006,36(3):181-187.  [15] Assimakopoulos SF, Scopa CD, Zervoudakis G, et al. Bombesin and neurotensin reduce endotoxemia, intestinal oxidative stress and apoptosis in experimental obstructive jaundice[J]. Ann Surg,2005,241(1):159-167.  [16] Assimakopoulos SF, Maroulis I, Patsoukis N, et al. Effect of antioxidant treatments on the gut-liver axis oxidative status and function in bile duct-ligated rats[J]. World J Surg,2007,31(10):2023-2032.  [17] Pata C, Caglikulekci M, Cinel L, et al. The effects of antithrombin-III on inducible nitric oxide synthesis in experimental obstructive jaundice. An immunohistochemical study[J]. Pharmacol Res,2002,46(4):325-331.  [18] Kamata H, Hirata H. Redox regulation of cellular signaling [J]. Cell Signal,1999,11(1):1-14.  [19] Rao RK, Basuroy S, Rao VU , et al. Tyrosine phosphorylation and dissociation of occludin-ZO-1 and E-cadherin-beta-catenin complexes from the cytoskeleton by oxidative stress[J]. Biochem J,2002,368(2):471-481.  [20] Nagira M, Tomita M, Mizuno S, et al. Ischemia/reperfusion injury in the monolayers of human intestinal epithelial cell line caco-2 and its recovery by antioxidants[J]. Drug Metab Pharmacokinet,2006,21(3):230-237.  [21] Banan A, Farhadi A, Fields JZ, et al. Evidence that nuclear factor-?资appa B activation is critical in oxidant-induced disruption of the microtubule cytoskeleton and barrier integrity and that its inactivation is essential in epidermal growth factor-mediated protection of the monolayers of intestinal epithelia[J]. J Pharmacol Exp Ther,2003,306(1):13-28.  [22] Sano T, Ajiki T, Takeyama Y, et al. Internal biliary drainage improves decreased number of gut mucosal T lymphocytes and MAdCAM-1 expression in jaundiced rats[J]. Surgery,2004,136(3):693-699.  [23] Ogawa A, Tagawa T, Nishimura H, et al. Toll-like receptors 2 and 4 are differentially involved in Fas dependent apoptosis in Peyer’s patch and the liver at an early stage after bile duct ligation in mice[J]. Gut,2006,55(1):105-113.  [24] Arai T, Yoshikai Y, Kamiya J, et al. Bilirubin impairs bactericidal activity of neutrophils through an antioxidant mechanism in vitro[J]. J Surg Res,2001,96(1):107-113.  [25] Wells CL, Jechorek RP, Erlandsen SL. Inhibitory effect of bile on bacterial invasion of enterocytes: possible mechanism for increased translocation associated with obstructive jaundice [J]. Crit Care Med,1995,23(2):301-307.  [26] Li W, Sung JJ, Chung SC. Reversibility of leukocyte dysfunction in rats with obstructive jaundice[J]. J Surg Res,2004,116(2):314-321.  [27] Zou S, Wang J. The relationship between protein kinase C signal pathway and the immunologic evaluation in patients with obstructive jaundice[J]. Zhonghua Wai Ke Za Zhi,2001,39(12):897-900.  [28] Mankertz J, Tavalali S, Schmitz H, et al. Expression from the human occludin promoter is affected by tumor necrosis factor alpha and interferon gamma[J]. J Cell Sci,2000,113(11):2085-2090.  [29] Ko JS, Yang HR, Chang JY, et al. Lactobacillus plantarum inhibits epithelial barrier dysfunction and interleukin-8 secretion induced by tumor necrosis factor-alpha[J]. World J Gastroenterol,2007,13(13):1962-1965.  [30] Tian YF, Li Y, Zhao Q, et al. Effect of ulinastatin on intestinal mucosal barrier function of rats with obstructive jaundice[J]. Nan Fang Yi Ke Da Xue Xue Bao,2007,27(7):987-990. (Chinese)  [31] Sheen-Chen SM, Ho HT, Chia-Pei L, et al. The effect of insulin-like growth factor-I on hepatocyte apoptosis after bile duct ligation in rat[J]. Dig Dis Sci,2006,51(12):2220-2224.  [32] Sheen-Chen SM, Ho HT, Chen WJ, et al. Obstructive jaundice alters proliferating cell nuclear antigen expression in rat small intestine[J]. World J Surg,2003,27(10):1161-1164.  [33] Parks RW, Stuart Cameron CH, Gannon CD, et al. Changes in gastrointestinal morphology associated with obstructive jaundice[J]. J Pathol,2000,192(4):526-532.  [34] Geyik MF, Aldemir M, Hosoglu S, et al. The effects of Saccharomyces boulardii on bacterial translocation in rats with obstructive jaundice[J]. Ann R Coll Surg Engl,2006,88(2):176-180.  [35] Simonovic I, Rosenberg J, Koutsouris A, et al. Enteropathogenic Escherichia coli dephosphorylates and dissociates occludin from intestinal epithelial tight junctions[J]. Cell Microbiol,2000,2(4):305-315.  [36] Parks RW, Halliday MI, McCrory DC, et al. Host immune responses and intestinal permeability in patients with jaundice [J]. Br J Surg,2003,90(2):239-245.  [37] Akin ML, Erenoglu C, Dal A, et al. Hyperbaric oxygen prevents bacterial translocation in rats with obstructive jaundice[J]. Dig Dis Sci,2001,46(8):1657-1662.  [38] Fukuoka K, Ajiki T, Miyazawa M, et al. Changes in the number of gut mucosal T-lymphocytes and macrophages in patients treated by external biliary drainage[J]. Eur J Surg,2001, 167(9):684-648.  [39] Sheen-Chen SM, Ho HT, Chen WJ, et al. Obstructive jaundice alters CD44 expression in rat small intestine[J]. Digestion, 2002,65(2):112-117.  [40] Sugawara G, Nagino M, Nishio H, et al. Perioperative synbiotic treatment to prevent postoperative infectious complications in biliary cancer surgery: a randomized controlled trial[J]. Ann Surg,2006,244(5):706-714.

医思倍微信
医思倍移动端
医思倍小程序