当前位置:首页 > 文献频道 > 临床内科学 > 文献详细

《胸外科学》

L-精氨酸、腺苷和组氨酸联合应用对心肌的保护效果

发表时间:2010-06-24  浏览次数:538次

  作者:贾梦醒 杜磊 杨平亮 王蔚 赁可 刘进  四川大学华西医院麻醉与危重医学研究室,胸心外科*,四川省成都 610041

  摘 要 目的:在传统心脏停搏液中加入L-精氨酸、腺苷和组氨酸,观察改良心脏停搏液对心肌缺血/再灌注损伤(I/R)的保护作用。方法:采用随机双盲对照法,12只健康成年杂种犬随机分为传统心脏停搏液(TBC)组和改良心脏停搏液(MBC)组。麻醉后建立体外循环(CPB),CPB开始后5min阻断升主动脉,于主动脉根部灌注传统心脏停搏液或改良心脏停搏液。阻断2小时后开放升主动脉,应用多巴胺和/或肾上腺素支持循环功能,达停机指标后停机,再观察30min。在CPB前(T1)、升主动脉开放后5min(T2)、停机(T3)和停机后30min(T4)抽取中心静脉血测定血浆心肌肌钙蛋白I(cTnI)浓度和肌酸激酶同工酶(CK-MB)活性。记录各时点血流动力学指标、多巴胺用量以及辅助时间。实验结束前取左心室心肌全层行病理检查。结果:12只犬均顺利脱机,但TBC组辅助时间比MBC组长(P<0.05),停机时多巴胺用量高(P<0.05)。血浆cTnI浓度和CK-MB活性在T1时点相似(P>0.05),开放升主动脉后cTnI深度增高,但TBC组高于MBC组(P<0.05),TBC组CK-MB活性也高于MBC组,但差异无统计学意义(P>0.05)。病理检查显示MBC组病理分级低于TBC组(P<0.05)。结论:与传统心脏停搏液相比,心脏停搏液中加入L-精氨酸、腺苷和组氨酸能减少变力性药物的用量,缩短辅助循环时间,减少cTnI、CK-MB的释放。

  关键词 心脏停搏液;心肌缺血/再灌注损伤;L-精氨酸;腺苷;组氨酸

  The Myoprotective Effect of the Blood Cardioplegic Solution with L-arginine,

  Adenosine and Histidine on the Myocardium during CPB in Canine.

  JIA Mengxing, DU Lei, YANG Pingliang, WANG Wei*, DIAN Ke*, LIU Jin

  (Department of Anaesthesiology, Department of Cardiothoracic Surgery*,Huaxi Hospital, Sichuan University, Chengdu 610041, China)

  Abstract Objective:To investigate if blood cardioplegic solution enriched with L-arginine, adenosine and histidine can improve the myocardial protection after ischemic reperfusion injury (I/R). Methods: 12 adult healthy mongrel dogs of either sex weighting from 17.5kg to 25kg were divided into two groups(TBC group and MBC group)at random, and then anesthetized and heparinized. Cardiopulmonary bypass (CPB) was set up. Aorta was cross-clamped and the heart was perfused antegradly from root of aorta with either traditional blood cardioplegic solution (TBC group, n=6) or modified blood cardioplegic solution (MBC group, n=6) enriched with 2 mmol/L L-arginine, 1 mmol/L adenosine and 10 mmol/L histidine at 29℃. After two hours ischemia, aorta was unclamped. Dopamine and/or adrenaline were used in order to wean from CPB. Cardiac troponin I (cTnI) and creatine kinase MB (CK-MB) were measured in two groups before CPB, 5 minutes after unclamping, at the end of CPB, and 30 minutes after CPB respectively. Hemodynamic data were also taken down. At the end of the experiment, specimens from left ventricles were taken for pathological examination. Results:All dogs were weaned from CPB successfully. The dosage of inotropic drugs of TBC group were higher than that of MBC group(P>0.05), and two dogs used adrenaline support in TBC group. Serum concentration of cTnI and activity of CK-MB of TBC group were also higher than that of MBC group. Pathological results showed that pathological grading was lower in MBC group than that in TBC group. Conclusion: Blood cardioplegic solution enriched with L-arginine, adenosine and histidine can reduce myocardial injury and leakage of cTnI and CK-MB 2 hours after ischemia during cardiopulmonary bypass in canine.

  Key words Blood cardioplegic solution;Ischemic reperfusion injury; L-arginine; Adenosine ;Histidine;

  目前,临床上多使用1∶4的含血心脏停搏液,其心肌保护效果优于晶体停搏液[1]。然而,这种停搏液仍有许多缺陷:不能启动心肌的自我保护机制;停搏液中血小板和白细胞的活化、黏附和胞浆内颗粒的释放以及补体的激活,可能加重I/R损伤[2]。本研究将L-精氨酸、腺苷和组氨酸加入心脏停搏液中,观察改良停搏液对心肌I/R的保护作用。

  1 材料与方法

  1.1 实验动物与方法 12只健康成年杂种犬,体重17.5~25kg,雌雄不拘,按随机双盲对照法分为传统心脏停搏液组(TBC组,n=6)和改良心脏停搏液组(MBC组,n=6),两种心脏停搏液的主要成分见表1。

  表1 心脏停搏液的成分 略

  1.2 心肌组织病理学检查 停机40min后处死动物,取左心室全层心肌,用10%甲醛溶液固定,常规切片,HE染色,由专业病理学医师进行分级。参照Rona[3]等的标准将心肌损伤分为5级。

  1.3 统计分析 计量数据以均数±标准差(x±s)表示。应用SPSS11.0统计软件作统计学处理,两样本均数比较采用Student-t检验,率的比较采用χ2检验,P<0.05时认为有统计学意义。

  2 结果

  2.1 血流动力学指标及循环辅助 12只犬均能脱机。TBC组辅助时间(33.3±9.2)min长于MBC组(24.5±5.9)min(P<0.05),停机时多巴胺用量TBC组(4.8±2.6)μg?kg-1?min-1大于MBC组(0.8±2.0)μg?kg-1?min-1(P<0.05)。停机30min时MBC组仅1只需要多巴胺支持,而TBC组6只均需应用多巴胺(P<0.05),有2只犬应用了肾上腺素,而MBC组未用。两组动物的HR、MAP在各时点均无统计学差异(P>0.05),MBC组CO在CPB后显著高于TBC组(P<0.05)(表2)。

  2.2 生化指标 在CPB前两组血浆cTnI浓度没有显著性差异(P>0.05),开放升主动脉后血浆cTnI浓度均增高,但TBC组高于MBC组(P<0.05)。血浆CK-MB活性在开放升主动脉后各时点均显著升高,TBC组也高于MBC组,但无统计学差异(P>0.05)(表3)。

  表2 体外循环前后血流动力学指标(略)

  表3 体外循环前后血浆cTnI浓度和CK-MB活性(略)

  2.3 心肌组织病理学分析 病理检查显示MBC组的心肌组织变化较轻(图1),分别为0级4例、Ⅰ级2例;TBC组心肌损伤明显(图2),分别为0级2例、Ⅰ级3例、Ⅱ级1例。MBC组病理分级低于TBC组(P<0.05)。

  图1 ― 图2 略

  3 讨论

  临床上常用的1∶4(血液∶晶体停搏液)含血心脏停搏液能够使心肌电活动和机械活动迅速停止,降低氧耗量;在心脏停跳期间,提供部分氧和代谢底物;血液中丰富的缓冲对能有效抑制心肌细胞内酸性代谢产物的堆积,其心肌保护效果优于晶体液[1]。但其心肌保护作用受到血液中激活的白细胞和血小板的限制,它们沉积于心肌组织并释放弹性蛋白酶,损伤内皮和心肌细胞,最终引起内皮损伤、凋亡、心肌坏死和酶释放。心肌I/R损伤涉及复杂的病理生理机制[4],仅仅采取某一种药物处理常不能阻止损伤过程。

  L-精氨酸-NO通路是机体重要保护途径之一,NO通过激活G蛋白偶联通道而抑制白细胞和血小板黏附[5]。Yeh[6] 等发现缺血后NO释放量明显减少。L-精氨酸是合成NO的底物,停搏液中加入L-精氨酸能增加NO的释放,提高缺血后心肌顺应性,降低冠脉血管阻力[7]。若L-精氨酸剂量过小,可能难以达到有效的NO浓度,而高浓度的L-精氨酸可产生毒性的超氧阴离子[8],其使用剂量难以掌握。我们应用2mmol/L的L-精氨酸,低于以前的文献报道[9]。腺苷是由心肌细胞和血管内皮细胞释放的一种内源性物质,作用于特异性A1、A2a、A2b和A3受体[10],能够开放钾通道,抑制钙超载[11],在预处理和I/R损伤中起保护作用。在心肌缺血早期,心肌细胞和内皮细胞释放腺苷增加,对心肌有保护作用[12]。在缺血前、缺血期和再灌注期给予腺苷,均有心肌保护作用[13]。Dobson[14] 等发现增加了腺苷的停搏液能加速心脏停搏,改善缺血后的收缩功能。NO和腺苷的保护作用还可能与它们的扩张冠状血管作用有关[14],血管扩张可使心肌停搏更匀称、更快,而且有更多的血液在组织内储存,在缺血期间形成氧池。心肌缺血后需氧代谢受抑制,糖酵解作用增强。但长时间的缺血使乳酸积聚,细胞内酸中毒,抑制糖酵解[15]。HCO3-/H2CO3是血液中的主要缓冲对,但温度下降后缓冲能力下降,引起心肌局部酸中毒。组氨酸在低温下仍具有较强的缓冲能力,在停搏液中加入组氨酸有利于维持pH的稳定,减轻缺血后的酸中毒。本研究在传统心脏停搏液中加入L-精氨酸、腺苷和组氨酸,以期增加对心肌I/R损伤的保护作用。

  血浆cTnI浓度和CK-MB活性是心肌损伤敏感而特异的指标,可用于围术期心肌保护效果的评估。本研究表明,缺血后cTnI浓度和CK-MB活性均升高,但MBC组在I/R后各时点的cTnI浓度均显著低于TBC组,提示改良停搏液的心肌保护效果优于TBC组。尽管MBC组CK-MB活性低于传统组,但无统计学意义,这可能是由于CK-MB特异性差[16]。CPB期间同样发生骨骼肌的损伤,使CK-MB产生非特异性升高,可能会干扰对心肌损伤的评估[17]。心脏手术后正性肌力药物的使用时间和剂量是心肌功能恢复的重要指标。 MBC组停机时多巴胺用量和肾上腺素使用率显著低于TBC组,循环辅助时间短于TBC组,提示MBC组心肌损伤较轻,改良停搏液能够促进缺血后心脏功能的恢复。心肌显微结构病理分级是心肌细胞损伤程度的可靠指标,本研究发现,MBC组病理分级较低,提示MBC组的心肌细胞损伤较轻。

  I/R引起的心肌损伤是一个复杂的病理生理过程,单一的处理方式难以阻止损伤过程。本研究表明,温血灌注液中加入L-精氨酸、腺苷和组氨酸能减少心肌细胞酶的释放,提高再灌注后心肌功能,减少变力性药物的用量,降低循环辅助时间,提供更有效的心肌保护作用。

  参考文献

  [1] Ferreira R, Fraga C, Carrasquedo F, et al. Comparison between warm blood and crystalloid cardioplegia during open heart surgery[J]. Int J Cardiol, 2003, 90(2-3): 253.

  [2] Martin J, Krause M, Benk C, et al. Blood cardioplegia filtration[J].Perfusion, 2003, 18: 75.

  [3] Rona G, Chappel CI, Balazs T, et al. An infarct-like myocardial lesion and other toxic manifestations produced by isoproterenol in the rat[J].Arch Pathol, 1959, 67(1): 443.

  [4] Bull DA, Maurer J. Aprotinin and preservation of myocardial function after ischemia-reperfusion injury[J]. Ann Thorac Surg, 2003, 75(2): S735.

  [5] Mizuno A, Baretti R, Buckberg GD, et al. Endothelial stunning and myocyte recovery after referfusion of jeopardized muscle: a role of L-arginine blood cardioplegia[J]. J Thorac Cardiovasc Surg,1997,113: 379.

  [6] Yeh CH, Lin YM, Wu YC, et al. Notric oxide attenuates cardiomyocytic apoptosis via diminished mitochondrial complex I up-regulation from cardiac ischemia-reperfusion injury under cardiopulmonary bypass[J]. J Thorac Cardiovasc Surg, 2004, 128: 180.

  [7] Kown MH, Lijkwan MA, Jahncke CL, et al. L-Arginine polymers enhance coronary flow and reduce oxidative stress following cardiac transplantation in rats[J]. J Thorac Cardiovasc Surg, 2003 , 126(4): 1065.

  [8] Soos P, Andrasi T, Buhmann V, et al. Myocardial protection after systemic application of L-arginine during reperfusion[J]. J Cardiovasc Pharmacol, 2004 , 43(6): 782.

  [9] Kronon MT, Allen BS, Halldorsson A, et al. Dose dependency of L-arginine in neonatal myocardial protection: the nitric oxide paradox[J]. J Thorac Cardiovasc Surg,1999, 118(4): 655.

  [10] Lee HT, Emala CW. Characterization of adenosine receptors in human kidney proximal tubule (HK-2) cells[J]. Exp Nephrol, 2002, 10(5-6): 383.

  [11] Mangoni ME, Barrere-Lemaire S. Adenosine receptors, heart rate, and cardioprotection[J]. Cardiovasc Res,2004, 62: 447.

  [12] Janin Y, Qian YZ, Hoag JB, et al. Pharmacologic preconditioning with monophosphoryl lipid A is abolished by 5-hydroxydecanoate, a specific inhibitor of the K(ATP) channel[J]. J Cardiovasc Pharmacol, 1998, 32(3): 337.

  [13] Spinale FG. Cellular and molecular therapeutic targets for treatment of contractile dysfunction after cardioplegic arrest[J]. Ann Thorac Surg, 1999, 68(5): 1934.

  [14] Dobson GP, Jones MW. Adenosine and lidocaine: A new concept in nondepolarizing surgical myocardial arrest, protection, and preservation[J]. J Thorac Cardiovasc Surg, 2004, 127: 794.

  [15] Liu Q, Docherty JC, Rendell JC, et al. High levels of fatty acids delay the recovery of intracellular pH and cardiac efficiency in post-ischemic hearts by inhibiting glucose oxidation[J]. J Am Coll Cardio, 2002, 39(4): 718.

  [16] Shyu KG, Kuan PL, Cheng JJ, et al. Cardiac troponin T, creatine kinase, and its isoform release after successful percutaneous transluminal coronary angioplasty with or without stenting[J]. Am Heart J, 1998 , 135: 862.

  [17] Kawahto K, Mohara J, Misawa Y, et al. Assessment of the myocardial protective effect of antegrade warm blood cardioplegia by measuring the release of biochemical markers[J]. Surg-Today, 1999, 29(4): 322

 

医思倍微信
医思倍移动端
医思倍小程序