DLαAAA诱发恒河猴特发性黄斑旁毛细血管扩张症
发表时间:2011-12-27 浏览次数:506次
作者:张君,胡运韬,马志中,盛迅伦 作者单位:中国北京市,北京大学眼科中心;(750004)中国宁夏回族自治区银川市,宁夏医科大学附属医院眼科;(050051)中国山东省青岛市开发区第一医院眼科
【摘要】 目的:选择性干扰黄斑区Müller细胞,试图建立特发性黄斑旁毛细血管扩张症(idiopathic perifoveal telangiectasis,IPT)动物模型。方法:恒河猴12只随机分为6组,前3组单眼视网膜下注入DLαAAA(DLαaminoadipic acid)5,10,50mmol/L 30μL,后3组单眼玻璃体腔分别注入DLαAAA 16,50,80mmol/L 100μL。术前1wk及术后6,12wk行眼底彩色照相、荧光素眼底血管造影、黄斑自发荧光、光学相干断层成像(optical coherence tomography,OCT)、多焦视网膜电图(multifocal roretinogram,mfERG)检测,并摘除眼球行光镜检查。结果:视网膜下5,10mmol/L DLαAAA及玻璃体腔50mmol/L DLαAAA,给药后6wk均出现IPT且OCT和光镜亦有相应病理改变;视网膜下50mmol/L DLαAAA,及玻璃体腔80mmol/L DLαAAA,病理损伤严重但未出现IPT。结论:视网膜下5~10mmol/L DLαAAA、玻璃体腔50mmol/L DLαAAA均可诱发IPT。
【关键词】 恒河猴;Müller细胞;DLαAAA;IPT;视网膜下给药
Induction of idiopathic perifoveal telangiectasis by DLαAAA in rhesus monkeysJun Zhang, YunTao Hu, ZhiZhong Ma, XunLun ShengEye Center of Peking University, Beijing 100083, China; Department of Ophthalmology, Affiliated Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China;Department of Ophthalmology, the First Hospital of Qingdao Development Zone, Qingdao 050051, Shandong Province, ChinaAbstractAIM: Selective disturbance of macular Müller cells on the neural retina and retinal vasculature in nonhuman primates. Try to establish the animal model of idiopathic perifoveal telangiectasis(IPT). METHODS: Twelve rhesus monkeys (24 eyes) were divided into 6 groups randomly. In the former 3 groups, DLαaminoadipic acid (DLαAAA) solution 30μL of 5, 10, 50mmol/L were injected subretinally respectively, one eye for each rhesus monkey, as 3 experimental groups. The control groups were injected subretinally PBS 30μL in other eyes. In the later 3 groups, DLαAAA solution 100μL of 16, 50, 80mmol/L were injected intravitreally respectively, one eye for each rhesus monkey, as 3 experimental groups. The control groups were injected intravitreally PBS 100μL in other eyes. All eyes were examined by fundus color photography, fluorescein angiography, macular autofluorescence, optical coherence tomography(OCT), multifocal electroretinography(mfERG) and optical microscopy at 1st week before the operation and 6th, 12nd week after the operation.
RESULTS: After 6th week of operation, IPT were happened in the groups of subretinal 5mmol/L, 10mmol/L and the group of intravitreal 50mmol/L. In the same concentration groups, corresponding pathological changes were found by OCT and optical microscopy. The group of subretinal 50mmol/L and the group of intravitreal 80mmol/L response a more serious pathological changes, but IPT has not occurred in those groups. CONCLUSION: DLαAAA as ah agentspecific interference of Müller cells in retina, the concentration between subretinal 5mmol/L to 10mmol/L and the concentration intravitreal 50mmol/L could induce IPT.
KEYWORDS: rhesus monkeys; Müller cells; DLαAAA; IPT; subretinal injection0 引言
特发性黄斑旁毛细血管扩张症(idiopathic perifoveal telangiectasis,IPT)是一种罕见的潜在致盲性眼病[1]。由于病源稀少又缺乏病因学的研究。IPT动物模型的创建,无疑成为攻克IPT的研究热点。通过近期研究,发现IPT最初的异常发生于视网膜的神经和胶质成分——Müller细胞[2]。我们设想通过选择性干扰黄斑区Müller细胞以建立IPT动物模型,旨在为今后IPT的实验研究及临床研究提供依据。
1 材料和方法
1.1 材料
成年恒河猴12只,体质量6±1.5kg,雌雄不限,购自北京大学医学部动物实验中心。
1.2 方法
每只动物随机取单眼分成6组,每组2眼。前3组视网膜下分别注入5,10,50mmol/L DLαAAA (sigmaaldrich)30μL,其余对侧眼视网膜下均注入PBS 30μL作为对照。后3组玻璃体腔内分别注入16,50,80mmol/L DLαAAA 100μL,其余对侧眼玻璃体腔内均注入PBS 100μL作为对照。溶液以PBS配制。速眠新、盐酸氯胺酮1∶1配比全身麻醉,贝诺喜滴眼液表面麻醉。前3组复方托吡咔胺点眼以散大瞳孔,于角膜缘后2mm处,颞上方进导光纤维照明,鼻上方进自制视网膜下注药系统,将DLαAAA 30μL注入黄斑颞下方2CD处,对照组注入PBS 30μL;后3组于颞上方角膜缘后2mm处30G针头穿刺向玻璃体腔内注入DLαAAA 100μL,对照组注入PBS 100μL。每组注液后均前房穿刺放出少许房水降低眼压至正常。每眼注药前1wk和注药后6,12wk行眼底彩色照相、荧光素眼底血管造影、黄斑自发荧光、光学相干断层成像(optical coherence tomography,OCT)、多焦视网膜电图(multifocal electroretinogram,mfERG)检测;术后12wk处死动物摘除眼球,40g/L多聚甲醛溶液固定,视网膜组织石蜡包埋,切片5μm HE染色行光镜检查。
统计学分析:用SPSS 13.0统计学软件对数据(均值±标准差)进行处理。
2 结果
所有实验猴眼均未发生眼内炎及玻璃体混浊。眼底彩色照相所有眼均无玻璃体积血,但前3组有明显视网膜下浅脱离。视网膜下5,10mmol/L给药组光镜下可见外丛状层破坏明显;50mmol/L组可见感光细胞层和外丛状层破坏明显;玻璃体腔16mmol/L给药组未见明显异常;50,80mmol/L组感光细胞层和外丛状层破坏明显。
2.1 FFA检查
各组均可见黄斑旁微血管瘤,其中视网膜下5,10mmol/L给药组及玻璃体腔50mmol/L给药组出现IPT表现。
2.2 OCT检查
术后12wk视网膜下药液被完全吸收。其中视网膜下5mmol/L给药组可见小血管扩张;10,50mmol/L组可见轻微黄斑囊样扩张;玻璃体腔16mmol/L给药组未见明显异常;50mmol/L组可见黄斑前膜;80mmol/L组可见小血管扩张。
2.3 mfERG检查
各实验组黄斑区b波振幅的变化随术后时间的进展呈下降趋势。
3 讨论
特发性黄斑旁毛细血管症特征表现为视网膜透明度下降和黄斑旁血管异常。由于IPT具有潜在的致盲性且相关研究较少,吸引了众多眼科研究者。进年来,通过高速血管造影、OCT和组织病理学对该研究的应用,IPT血管异常的本质及其对黄斑区的影响已有了更为深刻的了解[14]。发现Müller细胞功能的异常优先于毛细血管内皮细胞变性。Müller细胞有5个主要功能:(1)神经元支架;(2)神经元代谢;(3)视觉形成;(4)维持细胞外机制的稳态;(5)调节视网膜血管发生[510]。这5个功能无一不与IPT的病理过程相关。依据该原理,对Müller细胞进行选择性干扰,人们得到了视网膜上毛细血管扩张的动物模型,但研究的实验动物多为不具有黄斑的哺乳类,因此该模型亦无法称其为IPT模型。我们依据前人的经验,将动物模型设计在具有黄斑的灵长类动物——恒河猴身上。为了使扩张的毛细血管定位于黄斑旁,我们运用一套自制的给药体系于黄斑旁进行视网膜下给药,以提高黄斑旁药物的持续浓度。并选用玻璃体给药及空白药液进行对照。由于视网膜下给药与玻璃体腔给药相比,药物不易扩散且更易作用于胶原细胞,因此玻璃体腔给药提高了相对浓度与相对量。我们发现:(1)视网膜下给药和玻璃体腔给药均可引起定位于黄斑旁的毛细血管扩张;(2)无论何种给药方式均会引起电生理中b波振幅的降低;(3)FFA中视网膜下5,10mmol/L和玻璃体腔50mmol/L给药组均出现黄斑旁扩张的毛细血管;(4)OCT中毛细血管扩张和黄斑囊样扩张均为IPT的特征性表现,支持了视网膜下5,10mmol/L和玻璃体腔16,50mmol/L给药组中FFA的表现。其中视网膜下50mmol/L组出现囊样扩张但FFA中并无相关表现,可能由于浓度过高引起组织破坏严重,使得该微环境不适合毛细血管发生扩张病变;玻璃体腔80mmol/L组扩张小血管不能在FFA中表现,可能由于扩张的小血管被药物毒性所损伤,仅残留下血管和填充红细胞的痕迹,失去供血功能,造成FFA中无表现;(5)光镜中外丛状层破坏可能是由于Müller细胞这一神经支架受损所引起,也支持了视网膜下5,10mmol/L组和玻璃体腔16,50mmol/L组中FFA的表现。其中视网膜下50mmol/L组和玻璃体腔80mmol/L组在外丛状层破坏的同时还表现出了感光细胞层的严重破坏,说明药物浓度与组织破坏程度成正比;(6)无论何种给药方式术后6wk和12wk未见显著差异。
分析视网膜下5,10mmol/L组和玻璃体腔50mmol/L组的结果,可能是由于DLαAAA恰好达到破坏Müller细胞的浓度且尚未引起其他组织损伤,能诱发IPT;玻璃体腔16mmol/L组,浓度过低尚不能引起Müller细胞损伤,无法诱发IPT;而视网膜下50mmol/L组和玻璃体腔80mmol/L组可能由于浓度过高,破坏了诱发IPT的其他微环境,也无法诱发IPT。综上所述,我们推论:(1)通过DLαAAA选择性干扰Müller细胞可以创建IPT模型;(2)无论何种给药方式,在干扰了Müller细胞又不严重破坏其微环境的前提下,可诱发IPT;(3)IPT的诱发均会伴有视敏度的降低;(4)浓度过高或过低均无法诱发IPT。该结果可为今后实验研究乃至临床研究提供一定依据。但由于本实验样本例数少,缺乏统计学意义,所得结果仍需后续大样本量进行证实。
【参考文献】
1 AxerSiegel R, Bourla D, Priel E, et al. Angiographic and flow patterns of retinal choroidal anastomoses in agerelated macular degeneration with occult choroidal neovascularization. Ophthalmology 2002;109:17261736
2 Voo I, Mavrofrides EC, Puliafito CA. Clinical applications of optical coherence tomography for the diagnosis and management of macular diseases. Ophthalmol Clin North Am 2004;17(1):2131
3 Davidorf FH, Pressman MD, Chambers RB. Juxtafoveal telangiectasis: a name change? Retina 2004;24(3):474478
4 Lawrence A, Yannuzzi MD, Anne MC, et al. Idiopathic Macular Telangiectasia. Arch Ophthalmol 2006; 124(4):450460
5 Milenkovic I, Weick M, Wiedemann P, et al. P2Y receptormediated stimulation of Müller glial cell DNA synthesis: dependence on EGF and PDGF receptor transactivation. Invest Ophthalmol Vis Sci 2003;44:12111220
6 Yafai Y, Iandiev I, Wiedemann P, et al. Retinal endothelial angiogenic activity: effects of hypoxia and glial (Müller) cells. Microcirculation 2004;11:577586
7 Eichler W, Yafai Y, Keller T, et al. PEDF derived from glial Müller cells: a possible regulator of retinal angiogenesis. Exp Cell Res 2004;299(1):6878
8 Tretiach M, Madigan MC, Wen L, et al. Effect of Müller cell coculture on in vitro permeability of bovine retinal vascular endothelium in normoxic and hypoxic conditions. Neurosci Lett 2005;378(3):160165
9 Giebel SJ, Menicucci G, McGuire PG, et al. Matrix metalloproteinases in early diabetic retinopathy and their role in alteration of the bloodretinal barrier. Lab Invest 2005;85:597607
10 Bringmann A, Pannicke T, Grosche J, et al. Müller cells in the healthy and diseased retina. Prog Retin Eye Res 2006;25(4):397424