当前位置:首页 > 文献频道 > 临床内科学 > 文献详细

《眼科学》

儿童远视和近视眼睫状肌麻痹前后各屈光成分的变化

发表时间:2009-11-23  浏览次数:562次

儿童远视和近视眼睫状肌麻痹前后各屈光成分的变化作者:王利华,徐文文,马鲁新,杨晓冉    作者单位:山东省立医院 眼科中心,山东 济南 250021    【摘要】  目的 通过测量比较儿童远视和近视眼睫状肌麻痹前后各屈光成分的变化,探讨调节对其屈光成分的影响。方法 对520例3~12岁儿童使用1%阿托品散瞳验光,睫状肌麻痹前后均采用光学相干生物测量仪(Zeiss IOL Master)测量眼轴长度、角膜屈光力(K1、K2)、前房深度。对其中远视646眼、近视221眼的睫状肌麻痹前后各屈光成分测量值进行统计对照分析。结果 ①儿童远视眼睫状肌麻痹后眼轴变短(P=0.01),角膜屈光力变小(K1 P=0.01;K2 P=0.04),前房深度加深(P=0.00)。②儿童近视眼睫状肌麻痹后前房深度加深(P=0.00),眼轴长度、角膜屈光力无变化。结论 儿童远视眼睫状肌麻痹后眼轴变短,角膜屈光力变小,前房加深;儿童近视眼睫状肌麻痹后前房加深,而眼轴长度、角膜屈光力无变化。    【关键词】  远视;近视;儿童;屈光成分;光学相干生物测量;睫状肌麻痹;调节    关于眼调节的详细机制尽管至今尚有争议,但目前认为调节的主要特征是晶状体弯曲度的增加。近年来研究发现,调节不仅仅表现为传统意义上的晶状体变化,还对眼的其他屈光成分如角膜、眼轴等都产生了影响。许多学者的研究表明,成年人在调节过程中角膜屈光力增大,眼轴长度增加。本研究旨在借助光学相干生物测量仪这一先进手段,观察比较儿童远视眼和近视眼睫状肌麻痹前后各屈光成分的变化,以探讨调节与儿童屈光不正的关系。1  资料与方法    1.1  资料  2006年6月~2007年3月在山东省立医院眼科门诊就诊,需进行睫状肌麻痹后视网膜检影验光的屈光不正儿童,共520例(950眼),男278例(517眼),女242例(433眼);年龄为3~12岁,平均为(7.54±2.15)岁;屈光度为-9.38~+12.00 D,平均为(+2.55±3.86)D。除去单纯散光、混合性散光83眼后,对其中远视646眼(包括单纯远视124眼和复性远视散光522眼),近视221眼(包括单纯近视40眼和复性近视散光181眼)进行统计分析。    1.2  方法  所有儿童均进行裸眼及矫正视力、眼底及注视性质、眼位及眼球运动检查,排除眼部器质性病变、偏心注视、既往眼部手术史者。采用德国Zeiss公司生产的光学相干生物测量仪(IOL Master)分别测量双眼的眼轴长度(axial length,AL)、角膜屈光力(the least refractive power of cornea,K1;the greatest refractive power of cornea,K2)、前房深度(anterior chamber depth,ACD)。然后给予1%阿托品眼膏涂眼,每日3次,连续3 d,由同一资深验光师进行视网膜检影验光,然后再次采用IOL Master进行测量。根据检影验光结果计算出等效球镜值SE(SE=S+C/2,其中S代表球镜值,C代表柱镜值),定义≥+0.75 D为远视,≥-0.50 D为近视。    1.3  统计学方法  所有数据均采用SPSS13.0软件包进行统计分析,所有数据先进行正态性检验,睫状肌麻痹前后各屈光成分测量值的比较采用配对设计资料的t检验。2  结果    2.1 儿童远视眼睫状肌麻痹前后各屈光成分的比较    远视646眼的屈光度为+0.75~+12.00 D,平均屈光度为(+4.32±2.55)D。睫状肌麻痹前后各屈光成分测量值及t检验数值见表1。可以看出,睫状肌麻痹后眼轴长度变短,角膜屈光力减小,前房深度加深。    2.2  儿童近视眼睫状肌麻痹前后各屈光成分的比较  近视221眼的屈光度为-0.50~-9.38 D,平均屈光度为(-2.65±1.83)D。睫状肌麻痹前后各屈光成分测量值及t检验数值见表2。可以看出,睫状肌麻痹后前房深度加深,而睫状肌麻痹前后眼轴长度、角膜屈光力的差异无显著统计学意义。3  讨论    3.1  光学相干生物测量  光学相干生物测量是一种先进的生物测量技术,为临床提供了新的眼球生物测量手段。光学相干生物测量仪——IOL Master的结果可与目前认为最准确的浸入法超声生物测量的结果相媲美。由于光学相干生物测量仪——IOL Master是基于部分相干干涉测量的原理,测量的眼轴长度是从角膜前表面到视网膜色素上皮层的光学路径,而超声波生物测量的眼轴长度是从角膜顶点到视网膜内界膜的距离,因此从理论上讲,IOL Master的测量值会比超声生物测量的测量值大,然而仪器制造商已将这一差异进行了修正[1-2]。国外很多学者对这一仪器测量的可信度、重复性进行了研究,认为光学相干生物测量仪IOL Master用于测量眼球的各屈光成分比超声生物测量更为准确可靠[3-4]。光学相干生物测量是一种非接触性的测量方法,操作简单,儿童易于接受。对于儿童屈光成分的测量,光学相干生物测量仪也具有良好的可重复性和准确性[5-6]。    3.2  睫状肌麻痹后眼轴长度的变化  调节过程中眼轴长度是否发生变化?Drexler等[7]的研究表明,在调节过程中眼轴长度会增加。他认为由于调节时睫状肌收缩,其后端牵拉脉络膜向前向内,从而使巩膜环放松,眼轴变长[7]。Mallen等[8]对成人正视眼和近视眼的研究也表明,调节时眼轴长度会有短暂的增长,并且增长的幅度与调节力的大小成正比。本研究结果表明,儿童远视眼睫状肌麻痹后眼轴长度变短,与文献[8]的研究结果一致。但是,由于光学相干生物测量是基于Gullstrand模型眼,把眼球不同的屈光介质看成均一介质,使用的平均屈光指数为1.3574,眼球平均屈光指数的变化可能会对测量结果造成一定影响。由于调节过程中晶状体厚度增加,眼的平均屈光指数会变大。Dubbelman等[9]的研究表明,调节过程中每增加1 D的调节,晶状体的平均屈光指数会增加大约0.0013。根据这一结果推算,光学生物测量仪测出的眼轴长度就会比实际偏长。Atchison等[1]采用IOL Master测量眼轴长度,通过Gullstrand模型眼计算,眼球行使10.9 D的调节会造成眼轴的18~26 ?滋m测量误差。本研究表明,儿童远视眼睫状肌麻痹前后眼轴长度的差值约为24 ?滋m,与Atchison的研究结果相似。由于本研究没有测试调节力的大小和晶状体厚度变化,所以是因为光学介质屈光指数的变化导致了测量偏差,还是眼轴长度实际发生了变化,尚需进一步研究证实。    3.3  睫状肌麻痹后角膜屈光力的变化  既往认为调节时只会使晶状体发生改变,角膜屈光力不会发生变化[2]。随着近年来角膜测量仪器的发展,角膜的测量指标也日趋准确和完善。近年来许多研究发现调节时角膜屈光力增加[3-4,10-12]。Yasuda等[3]通过对成年人角膜在调节中的变化进行研究表明,调节时角膜屈光力平均增加0.60~0.72 D。Saitoh等[4]进一步研究了角膜前表面和后表面的变化,结果表明,在调节过程中角膜前后表面的屈光力都增加。本研究结果表明,儿童远视眼睫状肌麻痹后角膜屈光力减小,与既往对成年人的研究结论一致;但儿童近视眼睫状肌麻痹前后角膜屈光力未发生变化,可能与其日常使用的调节力较小有关。对于调节过程中角膜屈光力增加这一现象的机制,Yasuda等[11]解释为睫状肌的三种肌纤维收缩,使巩膜突环直径变小,起始于巩膜突的子午纤维向内牵拉巩膜突和小梁网,平行于角膜缘的环形纤维牵拉角膜缘处,从而使角膜弯曲度变大,屈光力增加。    3.4  睫状肌麻痹后前房深度的变化  目前研究认为,调节过程中晶状体厚度增加,其前表面前移,后表面后移,所以前房深度变浅[9,13]。本研究结果表明,睫状肌麻痹后前房深度加深,与以上研究结论一致。有文献报道,调节对前房深度的影响随着年龄增加而减小[14],这一变化可以用Schachar的理论进行解释:晶状体属于外胚叶组织,终生都在生长;而巩膜则属于中胚叶组织,13岁以后不再发生变化,因此,晶状体与睫状体之间的距离逐年缩短。肌学的生理特点是附着点之间的距离越短,作用越弱。故随着年龄增长,调节力逐渐下降,前房深度的变化逐渐减小[15]。【参考文献】    [1] Atchison DA, Smith G. Possible errors in determining axial length changes during accommodation with the IOL Master[J]. Optom Vis Sci,2004,81(4):283-286.    [2] Brown N. The change in shape and internal form of the lens of the eye on accommodation[J]. Exp Eye Res,1973,15(4):441-459.     [3] Yasuda A, Yamaguchi T. Steepening of corneal curvature with contraction of the ciliary muscle[J]. J Cataract Refract Surg,2005, 31(6):1177-1181.    [4] Saitoh K, Yoshida K, Hamatsu Y. Changes in the shape of the anterior and posterior corneal surfaces caused by mydriasis and miosis Detailed analysis[J]. J Cataract Refract Surg,2004, 30(5):1024-1030.    [5] Kimura S, Hasebe S, Miyata M, et al. Axial length measurement using partial coherence interferometry in myopic children:repeatability of the measurement and comparison with refractive components[J]. Jpn J Ophthalmol,2007,51(2):105-110.    [6] Carkeet A, Saw SM, Gazzard G, et al. Repeatability of IOL Master biometry in children[J]. Optom Vis Sci,2004,81(11):829-834.    [7] Drexler W, Findl O, Schmetterer L, et al. Eye Elongation during Accommodation in Humans:Differences between Emmetropes and Myopes[J]. Invest Ophthalmol Vis Sci,1998,39(11):2140-2147.    [8] Mallen EA, Kashyap P, Hampson KM. Transient axial length change during the accommodation response in young adults[J]. Invest Ophthalmol Vis Sci,2006,47(3):1251-1254.    [9] Dubbelman M, Van der Heijde GL, Weeber HA. Change in shape of the aging human crystalline lens with accommodation[J]. Vision Res,2005,45(1):117-132.    [10] Baikoff G, Lutun E, Ferraz C, Static and dynamic analysis of the anterior segment with optical coherence tomography[J]. J Cataract Refract Surg,2004,30(9):1843-1850.    [11] Yasuda A, Yamaguchi T, Ohkoshi K. Changes in corneal curvature in accommodation[J]. J Cataract Refract Surg,2003,29(7):1297-1301.    [12] Pierscionek BK, Popiotek-Masajada A, Kasprzak H. Corneal shape change during accommodation[J]. Eye,2001,15(Pt 6):766-769.    [13] Drexler W, Baumgartner A, Findl O. Biometric investigation of changes in the anterior eye segment during accommodation[J]. Vision Res,1997,37(19):2789-2800.     [14] 阎洪禄,于秀敏. 眼生理学[M]. 北京:人民卫生出版社,2001:593.    [15] 李秋明,郑广英. 眼科应用解剖学[M]. 郑州:郑州大学出版社, 2001:91-92.

医思倍微信
医思倍移动端
医思倍小程序