Tpr-Met致NIH3T3细胞恶性转化的分子机制初探
发表时间:2009-10-19 浏览次数:553次
Tpr-Met致NIH3T3细胞恶性转化的分子机制初探作者:郑红,汪思应,杨晓明,陈志武,李菲菲,倪芳 作者单位:安徽医科大学病理生理教研室,安徽 合肥 230032 【摘要】 [目的] 探讨NIH3T3细胞恶性转化的分子机制。[方法] 用表达Tpr-Met的重组质粒转染NIH3T3细胞致其恶性转化,用软琼脂集落实验和3H-TdR掺入DNA的方法检查细胞的生长状态及增殖性,用Western blot检测其c-Met及P-Erk、P-Akt表达水平,用EMSA实验检测NF-кB的结合活性。[结果] 转染Tpr-Met的细胞形态有明显改变,能在软琼脂中形成集落,形成的集落大且明显增多,转染pcDNA3.1/c-Met/Tpr-Met的细胞集落数分别是0,71±10和160±12,说明Tpr-Met能诱导NIH3T3细胞恶性转化。用3H-TdR掺入DNA的方法来检测细胞的增殖性,发现转染Tpr-Met的 NIH3T3细胞和转染c-Met的NIH3T3细胞相比,转染Tpr-Met的细胞增殖能力明显增强,差异有极显著性(P<0.01)。转化后的NIH3T3细胞DNA与NF-кB的结合能力明显增强,并且P-Erk和P-Akt的表达水平上调。[结论] NF-кB参与了Tpr-Met致NIH3T3细胞恶性转化的信号调控,提示阻断该信号途径有可能抑制肿瘤的生长和转移。 【关键词】 恶性转化 Molecular Mechanism of Tpr-Met-Mediated Malignant Transformation in NIH3T3 Cells ZHENG Hong1, WANG Si-ying1, YANG Xiao-ming2, et al. (1.Department of Pathophysiology, Anhui Medical University, Hefei 230032, China; 2.Department of Pharmacology, Anhui Medical University, Hefei 230032, China) Abstract: [Purpose] To explore the molecular mechanism of NIH3T3 cells malignant transformation induced by Tpr-Met, the mutant of the c-Met receptor. [Methods] The human Tpr-Met gene was cloned into pcDNA3.1 eucaryotic expression vector. The recombinant plasmid and the control pcDNA3.1 vector were introduced into NIH3T3 cells by lipofectin-mediated gene transfection. Then positive colonies were selected by G418 and were tested for their proliferation by colony forming and incorporation of 3H-TdR. The DNA binding activity (nuclear transposal) of NF-кB was detected by electrophoretic mobility shift assay (EMSA), and c-Met, P-Erk, P-Akt protein expression were detected by Western blotting. [Results] Comparing with normal cells and c-Met-transfected NIH3T3 cells, the Tpr-Met-transfected NIH3T3 cells had changed evidently in cytomorphology, its ability of forming cell colonies in soft agar(0,71±10 and 160±12, respectively, P<0.01) increased, which revealed the malignant transformation of NIH3T3 cells induced by Tpr-Met. Taking incorporation of 3H-TdR as the index of proliferation, the ability of cell proliferation of the Tpr-Met-transfected NIH3T3 cells increased significantly. In the transformed cells, the expressions of P-Erk and P-Akt were upregulated at the protein level and the DNA binding activity (nuclear transposal) of NF-кB was increased. [Conclusion] NF-кB pathway plays an important modulating role in the NIH3T3 cell malignant transformation, which suggests that blocking the NF-кB pathway would inhibit the tumor growth and metastasis. Key words: Tpr-Met; NIH3T3 cell; malignant transformation; NF-кB; molecular mechanism c-Met 受体是由c-Met原癌基因编码的一个190kD的异二聚体蛋白质,由胞外50kD的α亚单位和跨膜的145kD的β亚单位通过二硫键组成,结构上属Ⅱ型酪氨酸蛋白激酶受体,是一类有自主磷酸化活性的跨膜受体,具有胞外、胞内和跨膜结构域。c-Met能调节肝细胞生长因子(HGF)的生物学活性。HGF与c-Met结合后,激活受体发生自身磷酸化,启动多条信号通路,发挥多种生物学效应,调节细胞的增殖、分化、形态发生和侵袭运动等[1,2]。 HGF-c-Met信号转导通路广泛存在于各种细胞中,对多种组织器官的生长发育具有重要的生理调节功能,但当细胞过表达HGF或c-Met时,常常导致细胞发生癌变。肿瘤细胞c-Met的表达与正常细胞有着明显的区别,正常细胞有能力通过减少c-Met表达控制其对HGF的反应;而在许多人类肿瘤细胞中,尤其在肺癌、肝癌、胰腺癌、甲状腺癌、胃癌、结肠癌中均呈持续过度的表达,并呈现高水平的自体磷酸化[3],研究发现主要是由于c-Met发生了突变[4]。Tpr-Met是c-Met的一种突变体,它能够诱导NIH3T3细胞发生恶性转化。本文对Tpr-Met致细胞恶性转化的可能机制进行探讨。1 材料与方法 1.1 细胞与细胞培养 NIH3T3细胞,本室保存。细胞培养于100ml培养瓶中,培养箱内生长(37℃,5%CO2)。转染前培养液为完全DMEM即高糖DMEM,10%胎牛血清(FBS),双抗,转染后培养液为DMEM+10%FCS,并含G418 400μg/ml。 1.2 主要试剂 DMEM为GIBCO公司产品,胎牛血清为LIFE Technologies 公司产品;胰酶 GIBCO公司产品,PVDF膜为Amersham公司产品,c-Met、Erk1/2(1∶2 000)、P-Erk1/2、Akt、P-Akt抗体,辣根过氧化物酶标记的IgG抗体,ECL检测系统均为Santa Cruz产品,G418购自Sigma。T4寡核苷酸激酶、[γ-32P] ATP购自北京亚辉生物医学工程公司,NF-кB双链寡核苷酸探针购自Promega:5′-AGT TGA GGG GAC TTT CCC AGG C-3′,3′-TCA ACT CCG CTG AAA GGG TCC G-5′。 1.3 质粒转染及稳定克隆的筛选 野生型c-Met及突变型Tpr-Met真核表达质粒来自国外惠赠,接种1×105~2×105个NIH3T3细胞/2ml于35mm培养皿中,37℃,5%CO2温箱培养至丰度40%~60%左右,以脂质体法转染,方法按操作说明进行。配置溶液A:1.5ml灭菌Eppendorf管中加c-/Tpr-Met质粒DNA 12μg及反应液55μl,再加入无血清DMEM至终体积250μl;配制溶液B:1.5灭菌Eppendorf管中加脂质体(Lipofectamin)12.5μl,再加入无血清DMEM至终体积250μl;室温下放置15min后将溶液A和溶液B混合,混合液于室温放置15min;吸去培养皿中的原培养基,用3ml无血清DMEM漂洗1次;将上述A、B混合液0.5ml移入培养皿中,另加入2ml无血清DMEM,于37℃,5%CO2温箱中培养。8h更换为含10%-FCS的DMEM继续培养48h。用含 G418 800μg/ml的培养液进行筛选,挑取单克隆扩大培养。 1.4 转染后细胞总蛋白的提取及Western blot检测 c-Met、P-Erk、P-Akt的表达水平。细胞蛋白经SDS-PAGE电泳,电转移至PVDF膜上,用含50g/L脱脂奶粉TBST封闭液过夜(4℃),加入羊抗人c-Met多克隆抗体、鼠单抗Erk和P-Erk、鼠单抗Akt和P-Akt抗体室温1h,TBST洗4次,每次10min,再加经辣根过氧化物酶标记的相应的二抗(兔抗羊及羊抗鼠IgG,用封闭液1∶2 000稀释),摇床上缓慢摇动1h,用TBST洗4次,每次10min;用ECL系统进行检测,将A液(Super Signal West Pico Luminol/Enhancer Solution)与B液(Super Signal West Pico Stable Peroxide Solution)等体积混合,配成发光剂,均匀地涂在PVDF膜上,1min后吸去发光剂,用保鲜膜包裹,X线片压片,曝光2~5min,显影2min,定影5min。 1.5 软琼脂集落试验 消化转染后细胞成单细胞悬液,以每孔1 000个左右在24孔板中进行软琼脂集落试验。软琼脂铺法:下层为2×DMEM 3.2ml,血清0.8 ml,1.2% agrose 4.0ml配成8ml体系,按每孔0.3ml均匀铺于24孔板中,上层 2×DMEM 2.8ml,血清0.7ml,0.6% agrose 3.5ml与转c-Met、Tpr-Met细胞混合,每孔加0.5ml。 1.6 3H-TdR掺入DNA的方法检测细胞的增殖 细胞用胰酶消化,5×103细胞/孔接种96孔细胞培养板,37℃,5%CO2条件下培养24h。每孔加入1.85×104 Bq 3H-TdR,4h后醋酸玻璃纤维滤纸抽滤收集细胞,以液闪计数测定cpm值。实验重复3次。 1.7 电泳迁移率改变分析(electrophoretic mobility shift assay,EMSA) 取转染后细胞提取核蛋白做EMSA,以检测蛋白与NF-кB结合能力。细胞用10ml预冷的PBS洗两次,重悬于400μl buffer A(10mM Hepes pH 7.9,1.5mM MgCl2,10mM KCl,0.5mM DTT,0.5mM PMSF,1μg/ml leupeptin,1μg/ml aprotinin,1μg/ml pepstatin A)。冰上放置15min。加入12.5μl 10%的Nonidet P-40。轻轻混匀后2 000g 4℃离心10min,沉淀重悬于40μl buffer C(20mM Hepes pH 7.9,1.5mM MgCl2,450mM NaCl,25% glycerol,0.2mM EDTA,0.5mM DTT,0.5mM PMSF,1μg/ml leupeptin,1μg/ml aprotinin,1μg/ml pepstatin A),冰上静置30min。20 000g离心15min,上清即为核提取物。 NF-кB寡核苷酸探针的制备:32P标记NF-кB寡核苷酸2μl(1.75p M),10×T4缓冲液 1μl,32P-ATP 1μl(3 000Ci/mmol),无菌水5μl,T4核酸酶1μl(5~10U/μl),37℃反应10min,加入1μl 0.5M EDTA终止反应。 核蛋白在结合液(20mM Hepes pH 7.9,100mM KCl,20% glycerol,0.2mM EDTA,0.5mM DTT,0.5mM PMSF)与1μl 32P标记的NF-кB寡核苷酸中4℃反应15min。加上样缓冲液1μl,上样。DNA-protein 复合物在40%聚丙酰胺凝胶中电泳(电压300V,时间30~40min),取出凝胶压片。在-20℃放射性自显影12h。 1.8 统计学分析 计数结果用均值±标准差表示(x±s),统计学处理方法采用方差分析。2 结 果 2.1 Tpr-Met转染NIH3T3细胞后细胞的生长和形态发生改变 以空载体pcDNA3.1和表达c-Met的重组质粒做对照,转染Tpr-Met的细胞较转染c-Met细胞形成的集落明显增多,分别是160±12和71±10,形成的集落也较大,而只转染空载体的细胞不能形成集落(图1)(与对照组和Wild-type组比较,P<0.01)。Tpr-Met转染细胞较对照组细胞形态有明显改变(图2),并出现离散,增殖速度加快(图2c和图2d)。 2.2 转染Tpr-Met的NIH3T3细胞增殖能力增强 用3H-TdR掺入DNA的方法来检测细胞的增殖性,发现转染Tpr-Met的 NIH3T3细胞和转染了c-Met的NIH3T3细胞相比,转染Tpr-Met的细胞增殖能力明显增强,差异有极显著性(图3)(P<0.01)。正常、转染c-Met/Tpr-Met的NIH3T3细胞3H-TdR掺入DNA的量分别是2.86×103±0.12×103/cpm、4.57×103±0.27×103/cpm和6.3×103±0.35×103/cpm。 2.3 转染Tpr-Met的NIH3T3细胞c-Met及P-Erk、P-Akt表达水平 未转染质粒的NIH3T3细胞经G418筛选8d后全部死亡,转染c-Met、Tpr-Met的细胞获得抗性克隆,并持续增殖。应用Western blot检测技术,对转染细胞的c-Met或Tpr-Met,以及Erk、Akt和它们的磷酸化形式在蛋白表达水平进行了检测(图4),P-Erk、P-Akt的表达水平均有明显上调。 2.4 NF-кB与DNA的结合能力增强 电泳迁移率改变分析实验(EMSA)表明,转染Tpr-Met的 NIH3T3细胞与对照组相比,其核转录因子κB(NF-кB)与DNA的结合能力明显增强(图5)。3 讨 论 研究发现,c-Met扩增和高表达与多种肿瘤的发生、发展密切相关[2]。在本研究中,我们发现转染空载体的细胞生长正常,不能在软琼脂中形成集落,而转染c-Met尤其是Tpr-Met的NIH3T3细胞,细胞离散、形态发生改变、增殖速度明显加快,可在软琼脂中形成集落,表明细胞可能发生了恶性转变。 Tpr-Met是由两个c-Met胞内区蛋白分子连接在一起的二聚体,和正常c-Met受体相比,Tpr-Met缺少胞外区及跨膜区[5],虽然不能接受胞外HGF的刺激,但其自身含酪氨酸蛋白激酶结构域的两个胞内蛋白可相互激活,发生自发磷酸化介导下游信号转导,引发细胞的恶性改变,肿瘤细胞的侵袭、转移。研究发现突变的Met受体不仅摆脱了野生型Met的控制[6],而且事实上可能通过多种信号转导途径发生作用。 有报道HGF-c-Met信号通路可通过激活核转录因子κB(NF-кB)调控细胞增殖[2,7]。Paumelle等[8]和Recio等[9]的研究证实活化的c-Met 蛋白促使癌基因ras 结合GTP 转为活性状态,活化的ras启动丝裂原激活蛋白激酶(MAPK)通路,通过MAPK级联反应使转录细胞因子(如ETS1、ATF2)磷酸化,上调细胞周期素cyclinD1,启动相应核基因的表达,调控细胞周期,引起细胞增殖。 本研究中,3H-TdR 掺入实验证实转染c-Met尤其是Tpr-Met的NIH3T3细胞,增殖能力明显增强,Western blot结果,P-Erk水平上调,提示其增殖信号系介Grb2-SOS作“Ras→Raf-1→MEK1/2→Erk1/2”之MAPK级联传导。EMSA结果进一步表明:Tpr-Met有可能激活了NF-кB信号途径。 NF-кB是一种广泛存在于多种细胞内的诱导性转录因子,它参与细胞的生长、分化、肿瘤的发生和进展以及炎症和免疫应答等许多过程中,正常非诱导情况下,二聚体形成的NF-кB和其位于胞浆中的抑制蛋白IκB结合成三聚体,从而被锚定在胞浆中而不能入核发挥作用。当细胞外刺激通过不同的途径引起IκB的Tyr42磷酸化而变构,IκB与NF-кB解离,NF-кB随即进入细胞核,与核内DNA分子上κB序列特异结合,启动下游基因转录[10,11]。本研究显示P-Akt表达增强,Akt在NF-кB的活化中起关键作用,可从多个环节促进NF-кB的转录活性,一方面Akt可活化IKK,促进IκB的降解而促进NF-кB的核转位。另一方面,对已转位于核并结合在其特异性识别的DNA序列上的NF-кB,可直接磷酸化其P65亚单位,使其NF-кB的转录活性明显增强[12]。体外实验表明,放疗和化疗能激活NFκB的转录是诱导性肿瘤化疗耐药性的主要机制,抑制 NFκB能促进肿瘤细胞发生凋亡[13]。一直以来,HGF-c-Met信号通路成为公认的抗肿瘤靶点,但尚未见文献报道 Tpr-Met活化 NFκB信号途径并参与细胞恶性改变。 我们的研究表明Tpr-Met转染可能使NF-кB信号途径活化,使细胞生长转移能力增强,所以抑制Tpr-Met的生物学作用及其信号转导可能成为抗肿瘤生长和转移的新靶点。事实上,我们的初步研究已经发现了一些能够阻断HGF-Met信号转导途径的化合物[14],本研究为针对癌基因变异规律设计合理的肿瘤治疗方案和探讨药物作用机制及途径提供了重要的理论意义。【参考文献】[1] Maulik G, Shrikhande A, Kijima T, et al. Role of the hepatocyte growth factor receptor, C-Met, in oncogenesis and potential for therapeutic inhibition[J]. Cytokine Growth Factor Rev, 2002, 13(1):41-59.[2] Ma PC, Maulik G, Christensen J, et al. c-Met: structure, functions and potential for therapeutic inhibition[J]. Cancer Metastasis Rev, 2003, 22(4):309-325.[3] Tokunou M, Niki T, Eguchi K, et al. C-Met expression in myofibroblasts: role in autocrine activation and prognostic significance in lung adenocarcinoma[J]. Am J Pathol, 2001, 158(4):1451-1463.[4] Ieffers M, Fiscella M, Webb CP, et al. The mutationally activated Met receptor mediates motility and metastasis[J]. Proc Natl Acad Sci USA, 1998, 95(24):14417-14422.[5] Shuo Lin, Dario Rusciano, Patrizia Lorenzoni, et al. C-Met activation is necessary but not sufficient for liver colonization by B16 murine melanoma cells[J]. Clinl Exp Metastasis, 1998, 16(3):253-265.[6] Jeffers MF. Activating mutations in the Met receptor overcome the requirement for autophosphorylation of tyrosines crucial for wild type signaling[J]. Oncogene, 1999, 18(36):5120-5125.[7] Tacchini L, De Ponti C, Matteucci E, et al. Hepatocyte growth factor-activated NF-kappaB regulates HIF-1 activity and ODC expression, implicated in survival, differently in different carcinoma cell lines[J]. Carcinogenesis, 2004, 25 (11):2089-2100.[8] Paumelle R, Tulasne D, Kherrouche Z, et al. Hepatocyte growth factor/scatter factor activates the ETS1 transcription factor by a RAS-RAF-MEK-ERK signaling pathway[J]. Oncogene, 2002, 21(15):2309-2319.[9] Recio JA, Merlino G. Hepatocyte growth factor/scatter factor activates proliferation in melanoma cells through p38 MAPK, ATF-2 and cyclin D1[J]. Oncogene, 2002, 21(7):1000-1008. [10] Du J,Chen GG, Vlantis AC, et al. The nuclear localization of NF kappa B and p53 is positively correlated with HPV16 E7 level in laryngeal squamous cell carcinoma[J]. J Histochem Cytochen, 2003, 51(4):533-539.[11] Charalambous MP, Maihofner C, Bhambra U, et al. Upregulation of cyclooxygenase-2 is accompanied by increased expression of nuclear factor-kappa B and I kappa B kinase-alpha in human colorectal cancer epithelial cells[J]. Br J Cancer, 2003, 88(10):1598-1604.[12] Madrid LV,Mayo MW,Reuther JY,et al. Akt stimulates the transactivation potential of the RelA/p65 Subunit of NF-kappa B through utilization of the Ikappa B kinase and activation of the mitogen-activated protein kinase p38[J]. J Biol Chem, 2001, 276(22):18934-18940.[13] Wang CY, Cusack JC Jr, Liu R, et al. Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kappaB[J]. Nat Med, 1999, 5(4):412-417.[14] Wang SY, Chen B, Zheng H, et al. Su5416 is a potent inhibitor of hepatocyte growth factor receptor (c-Met) and blocks HGF-induced invasiveness of human HepG2 hepatoma cells[J]. J Hepatol, 2004, 41(2):267-273.