当前位置:首页 > 文献频道 > 临床内科学 > 文献详细

《心血管病学》

血管平滑肌细胞快速牵张损伤后细胞缝隙连接功能的变化

发表时间:2009-06-25  浏览次数:795次

作者:徐锡金,霍霞,李燕【关键词】  平滑肌细胞(A7r5);细胞损伤;缝隙连接

    [摘要]目的:探讨牵张损伤时血管平滑肌细胞(A7r5)缝隙连接功能的改变及其影响因素。方法:采用细胞牵张损伤装置建立A7r5细胞损伤模型,通过细胞培养、荧光显微镜、共聚焦激光扫描显微镜荧光漂白后恢复技术检测对照组,轻度、中度和重度牵张损伤组细胞活性(Hoechst 33342和propidium iodide染色)、细胞内钙(Fluo_4/AM染色)、细胞内氧自由基(H2DCFDA染色)和细胞间通讯功能(5_CFDA染色)的变化。结果:随着细胞牵张损伤的加重,细胞活性降低、细胞内钙及细胞内氧自由基升高、细胞间通讯功能下调。含钙缓冲液和细胞间通道阻断剂甘珀酸可使细胞通讯功能进一步下调,而Ca2+鳌合剂――乙二醇四乙酸、氧自由基清除剂――超氧化物歧化酶可使细胞通讯功能上调。结论:牵张损伤可通过细胞内钙超载和活性氧的增多来降低平滑肌细胞缝隙连接的细胞通讯功能。

  [关键词]平滑肌细胞(A7r5);细胞损伤;缝隙连接

  Rapid Stretch Injury Alters Gap Junction Coupling in Cultured A7r5 CellsXU Xi_jin1, HUO Xia1, LI   Yan, Margaret AParsley, Helen LHellmich, Donald SPrough, Douglas SDeWitt

  (1Central Laboratory, Shantou University Medical College, Shantou  515041, China;2Charles Allen Laboratories, Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, 77555, USA)

  Abstract]Objective: To estimate the role and affected mechanism of gap junctions during cell injury. Methods: A7r5 cells were seeded onto six_well FlexPlates that had a silastic bottom and provided the ability to deform and injure the cells. Mild, moderate and severe groups of rapid stretch injury(RSI, 55, 65, 75 mm deformation)were produced u_sing a model 94A cell injury controller. Cell injury was defined as the percent of Hoechst 33343 stained cells that stained with propidium iodide(PI). Gap junction communication was assayed using fluorescence recovery after photobleaching(FRAP). Cells were loaded with 5_carboxyfluorescein diacetate and intracellular fluorescence was measured using confocal laser scanning microscopy(CLSM). FRAP was expressed as percent of baseline fluorescence. Intracellular Ca2+([Ca2+]i)and reactive oxygen species(ROS)were imaged under CLSM using the fluorescent dyes fluo_4 AM and H2DCFDA/AM, respectively. Results: RSI produced level dependent increased in PI_positive cells, [Ca2+]i and ROS, but decreased in gap junctional communication. DPBS with calcium and gap junction blocker Carbenoxalone could further decrease gap junction communication; whereas antioxidant SOD or the calcium chelator EGTA could increase gap junction communication. Conclusion: These results suggest that increases in [Ca2+]i and ROS contribute to cell injury and impaired gap junctional communication after RSI in A7r5 cells in vitro.

  [Key Words]A7r5 Cell; cell injury; gap junction

  创伤性脑损伤(TBI)是临床上最常见的脑损伤之一。严重的TBI后,继发性脑损伤可导致不良后果。继发性脑损伤通常都认为是缺血引起的,主要与损伤后的低血压、低氧血症和颅内压增高有关。可能的机制包括脑血管痉挛和血循环压力自主调节机制受损。缝隙连接的细胞通讯功能是细胞维持其内环境稳定的最重要功能之一。血管内皮细胞和平滑肌细胞的缝隙连接被认为参与血管收缩和舒张,甚至参与脑血管自主调节机制[1,2]。本实验利用体外培养血管平滑肌细胞的牵张损伤模型[3],模拟在体脑创伤过程中细胞受压、牵张变形的应力变化,研究体外培养血管平滑肌细胞在不同程度牵张损伤后缝隙连接功能的变化及其影响因素和意义。

1  材料与方法

  11  细胞培养

  A7r5细胞(American Type Culture Collection,美国)培养于6孔硅胶膜培养板(Flexcell公司,美国),每孔细胞浓度为2×105/mL,用DMEM(Cellgro公司,美国)和体积分数10%胎牛血清(Gibco公司,美国),并常规加入青霉素(100ku/L)和链霉素(100mg/L),在37℃、体积分数5%的CO2培养箱中培养至细胞处于单层融合状态。

  12  细胞牵张损伤模型的建立

  根据文献[3]的方法,将硅胶膜培养板与牵张细胞损伤装置(94A Cell Injury Controller,美国)相连并保持密封。选择3个水平脉冲压力(55,66和75mm变形)损伤细胞,分别定为轻度、中度、重度细胞损伤组,同时设立对照组。

  13  细胞活力检测

  牵张损伤后A7r5细胞随即用碘化丙碇[PI,Sigma公司,美国]和Hoechst 33342(Sigma公司,美国)各5g/mL在培养箱中共同染色30min[4]。荧光显微镜(Nikon公司,日本)观察,在每个细胞培养孔中随机选择5个视野(中、上、下、左、右),每个视野计数100个细胞中PI阳性细胞数,取均值,以百分数值表示。PI阳性细胞即损伤细胞呈红色,其他细胞呈蓝色。

  14  细胞通讯功能检测

  采用荧光漂白后恢复(FRAP)技术进行细胞间通讯功能的检测[5]。细胞用5,6_CFDA/AM(Molecular Probes公司,美国)5μg/mL,37℃染色30min。用LSM510共聚焦激光扫描显微镜(Zeiss公司,德国)时间序列扫描方式进行扫描程序编辑,每隔20s扫描1次细胞,连续扫描10min。选择荧光强度适中并与周围有多个相邻细胞的细胞为淬灭对象,用强激光将被选定的细胞内的荧光淬灭,再用弱激光扫描细胞,观察细胞内荧光恢复程度。通过该仪器的软件获取图像与数据,以荧光恢复率判断细胞通讯功能。为判断细胞内钙([Ca2+]i)和细胞内活性氧(ROS)与细胞通讯功能的关系,还分别使用含钙缓冲液(DPBS,Cellgro公司,美国)、细胞通道阻断剂――甘珀酸(CBX,Sigma公司,美国)5μmmol、Ca2+鳌合剂――乙二醇四乙酸(EGTA,Molecular Probes公司,美国)5g/mL、氧自由基清除剂――超氧化物歧化酶(SOD,Sigma公司,美国)25g/mL处理各组细胞。

  15  细胞内钙检测

  细胞用fluo_4/AM(Molecular Probes公司,美国)10μg/mL,37℃染色30min,LSM510共聚焦激光扫描显微镜检测,用Metamorph图像分析软件计算[Ca2+]i平均荧光强度[6]。

  16  细胞内ROS检测

  细胞用H2DCFDA/AM(Molecular Probes公司,美国)5μg/mL,37℃标记30min。H2DCFDA进入细胞后,被细胞的酯酶转化成H2DCF,后者非常容易被活性基团氧化,产生强荧光的2′,7′_dichlorofluorescein。H2DCF对各类ROS都非常敏感[7]。用LSM510共聚焦激光扫描显微镜和Metamorph图像分析软件计算细胞内ROS平均荧光值。

  17  统计学处理

  采用SPSS 100统计软件包对各荧光值进行ANOVA单因素方差分析,多组数据之间的比较采用Students Newman_Keuls方法。

  2  结果

  21  损伤细胞随牵张损伤程度加重而增多

  对照组中只有少量PI阳性细胞(图1A,封3),说明硅胶膜上的细胞生长良好,细胞膜完整,个别PI阳性细胞属正常生理死亡细胞。各损伤组细胞经牵张损伤后仍较好地贴壁于硅胶膜上,并随着损伤级别的加重PI阳性细胞数随之增加(图1B~1C,封3)。各损伤组与对照组比有统计学意义(P<001),中度损伤组与轻度损伤组比有统计学意义(P<005),重度损伤组与中度损伤组比有统计学意义(P<001)(图2)。

  22  荧光恢复率随牵张损伤程度加重而降低

  对照组与损伤组细胞荧光漂白后都有不同程度的恢复(图3,封3),说明细胞间有缝隙连接存在。轻度损伤组与对照组比荧光恢复率有所降低(P>005);中度和重度损伤组较对照组荧光恢复率明显降低(P<001)(图4)。细胞经含钙DPBS和CBX处理后荧光恢复率较低,提示钙有类似CBX的作用,可使缝隙连接通道趋于关闭。细胞经SOD、EGTA处理后,荧光恢复率上升,与含钙DPBS和CBX处理的细胞比P<001(图5),但损伤组荧光恢复率小于对照组,提示牵张损伤可通过[Ca2+]i超载和ROS产生增多来降低平滑肌细胞缝隙连接细胞间通讯功能。

23  细胞内钙和ROS水平随牵张损伤程度加重而升高

  随着细胞牵张损伤的加重,[Ca2+]i和ROS水平均升高(图6,7)。经含钙DPBS处理后各组[Ca2+]i水平均高于经无钙DPBS处理的细胞,其中各损伤组的升高更为明显,与对照组比差异有统计学意义(P<001),说明细胞损伤后细胞外钙内流增加,损伤组细胞ROS水平较对照组升高(P<001)。

  3  讨论

  在中枢神经系统创伤研究中,由于体外研究模型能排除体内损伤过程中各种复杂因素的作用,并能区分原发损伤和继发损伤的细胞以及观察单因素对某种细胞的影响,故近年来体外培养细胞损伤模型日益引起人们的重视[8~10]。根据生物力学研究得到的颅脑创伤发生时的力学参数发展起来的细胞牵张损伤装置可近似地模拟在体脑创伤过程中细胞受压、牵张变形的应力变化[11,12]。此模型的优点是致伤条件易控制,重复性好,可控制损伤程度等。这种精确的控制有利于比较细胞对生理或损伤变形的反应,为研究颅脑损伤的病理机制和药物作用提供一个有用手段。

  以往有关细胞牵张损伤模型的研究多集中于神经细胞和神经胶质细胞[3,4,8~12],而对血管平滑肌细胞在牵张损伤时的生理、病理和功能变化未见报道。A7r5细胞是胚胎鼠主动脉的平滑肌细胞[13],细胞培养易存活,分裂增殖迅速,易于贴壁,牵张损伤后细胞不脱落,损伤后的细胞有修复和再生能力,是研究体外创伤较理想的细胞。本实验以A7r5细胞为牵张损伤对象,研究细胞牵张损伤时[Ca2+]i、细胞内ROS的变化与细胞通讯功能的改变。

  缝隙连接几乎存在于所有的动物细胞中,是细胞之间的细胞膜蛋白通道,允许无机离子、氨基酸、葡萄糖、代谢产物和其它分子质量小于12ku的物质在细胞间通过,是细胞维持其内环境稳定最重要的一项功能。缝隙连接是一种动态结构,能被各种正常和病理的刺激造成缝隙连接通道的开放和关闭。大鼠海马星形胶质细胞的缝隙连接蛋白可被蛋白激酶A和蛋白激酶C磷酸化、解偶联[14,15],NO、油酸和花生四烯酸可降低培养的皮质星形胶质细胞缝隙连接通道[16~18],红藻氨酸盐可减少大鼠海马神经元缝隙连接偶联[19],这些研究提示脑损伤、脑缺血、氧化剂可降低细胞通讯功能。本实验观察到牵张损伤细胞后细胞通讯功能降低。

  细胞损伤时细胞内钙库释放[20],细胞Ca2+通道开放,致大量Ca2+内流,以及Ca2+外排减少,以上因素均导致Ca2+超载,Ca2+超载可激活脂肪酶、蛋白酶和核酸内切酶等,导致细胞功能受损。ROS产生增多和[Ca2+]i超载可互为因果[21],ROS产生增多,可与细胞的膜磷脂、蛋白、核酸发生反应,使细胞功能障碍和结构破坏,影响钙内流;细胞膜脂质过氧化和通透性增强,细胞外Ca2+内流;膜Na+_K+_ATP酶失活,使细胞内Na+升高,Na+_Ca2+交换增强;线粒体膜损伤使ATP生成减少,后者使肌浆网钙泵活性降低,肌浆网摄取Ca2+减少。反之,钙超载导致ROS产生增加,钙敏感蛋白水解酶活性增高,促使黄嘌呤脱氢酶转变为黄嘌呤氧化酶,自由基生成增加;钙依赖性磷脂酶A2激活,使花生四烯酸生成增加,通过环加氧酶和脂加氧酶作用产生大量H2O2和OH?;Ca2+沉积线粒体使细胞色素氧化酶系统功能失调,O2经单电子还原形成氧自由基增多;Ca2+进入线粒体可使MnSOD、过氧化氢酶和过氧化物酶活性下降,导致氧自由基清除减少。因此,ROS产生增多和[Ca2+]i超载可互为因果,共同影响细胞功能。本实验提示细胞通讯功能降低与损伤细胞内ROS产生增多和[Ca2+]i超载有关联。

  参考文献:

  [1]Ujiie H,Chaytor AT,Bakker LM,et al. Essential Role of Gap Junctions in NO_and Prostanoid_Independent Relaxations Evoked by Acetylcholine in Rabbit Intracerebral Arteries[J]. Stroke,2003,34(2):544[2]Lagaud G, Karicheti V,Knot HJ,et al. Inhibitors of gap junctions attenuate myogenic tone in cerebral arteries[J]. Am J Physiol Heart Circ Physiol,2002,283(6):H2177-H2186.

  [3]Ellis EF,McKinney JS,Willoughby KA,et al. A new mo_del for rapid stretch_induced injury of cells in culture:chara_cterization of the model using astrocytes[J]. Neurotrauma,1995,12(5):465-469.

  [4]Engel DC, Slemmer JE,Vlug AS. Combined effects of mechanical and ischemic injury to cortical cells:Secondary ische_mia increases damage and decreases effects of neuroprotective agents[J]. Neuropharmacology,2005,49(7):985-995.

  [5]Quesada I, Fuentes E,Andreu E,et al. On_line analysis of gap junctions reveals more efficient electrical than dye coupling between islet cells[J]. Am J Physiol Endocrinol Metab, 2003,284(5):E980-987.

  [6]Pingguan MB, Lee DA,Bader DL,et al. Activation of chondrocytes calcium signalling by dynamic compression is independent of number of cycles[J]. Arch Biochem Biophys, 2005,444(1):45-51.

  [7]Khan M,Varadharaj S,Shobha JC,et al. C_phycocyanin ameliorates doxorubicin_induced oxidative stress and apoptosis in adult rat cardiomyocytes[J]. J Cardiovasc Pharmacol,2006,47(1):9-20.

  [8]Morrison B III,Cater HL,Benham CD,et al. An in vitro model of traumatic brain injury utilising two_dimensional stretch of organotypic hippocampal slice cultures[J]. J Neurosci Me_thods, 2006, 150(2):192-201.

  [9]LaPlaca MC, Cullen DK,McLoughlin JJ,et al. High rate shear strain of three_dimensional neural cell cultures: a new in vitro traumatic brain injury model[J]. J Biomech, 2005,38(5):1093-1105.

  [10]Pfister BJ, Weihs TP,Betenbaugh M,et al. An in vitro uniaxial stretch model for axonal injury[J]. Ann Biomed Eng, 2003,31(5):589-598.

  [11]Slemmer JE, Matser EJ, De Zeeuw CI,et al. Repeated mild injury causes cumulative damage to hippocampal cells[J]. Brain,2002,125(12):2699-2709.

  [12]Neary JT, Kang Y,Willoughby KA,et al. Activation of extracellular signal_regulated kinase by stretch_induced injury in astrocytes involves extracellular ATP and P2 purinergic receptors[J]. J Neurosci,2003,23(6):2348-2356.

  [13]Soboloff J, Spassova M,Xu W,et al. Role of endogenous TRPC6 channels in Ca2+ signal generation in A7r5 smooth muscle cells[J]. J Biol Chem, 2005,280(48):39786-39794.

  [14]Rorig B, Klausa G,Sutor B. Dye coupling between pyramidal neurons in developing rat prefrontal and frontal cortex is reduced by protein kinase A activation and dopamine[J]. J Neurosci, 1995,15(11):7386-7400.

  [15]Konietzko U, Muller CM. Astrocytic dye coupling in rat hip_pocampus: topography, developmental onset, and modulation by protein kinase C[J]. Hippocampus, 1994,4(3):297-306.(下转第81

  [16]Bolanos JP, Medina JM. Induction of nitric oxide synthase inhibits gap junction permeability in cultured rat astrocytes[J]. J Neurochem, 1996,66(5):2091-2099.

[17]Lavado E, Sanchez ALI, Tabernero A,et al. Oleic acid inhibits gap junction permeability and increases glucose uptake in cultured rat astrocytes[J]. J Neurochem, 1997,69(2):721-728.

  [18]Martinez AD, Saez JC. Arachidonic acid_induced dye uncoupling in rat cortical astrocytes is mediated by arachidonic acid byproducts[J]. Brain Res, 1999,816(2):411-423.

  [19]Sohl G, Guldenagel M,Beck H,et al. Expression of connexin genes in hippocampus of kainate_treated and kindled rats under conditions of experimental epilepsy[J]. Brain Res Mol Brain Res, 2000,83(1~2): 44-51.

  [20]Lusardi TA,Wolf JA,Putt ME,et al. Effect of acute calcium influx after mechanical stretch injury in vitro on the viability of hippocampal neurons[J]. Neurotrauma,2004,21(1):61-72.

  [21]Brookes PS, Yoon Y,Robotham JL,et al. Calcium,ATP,and ROS:a mitochondrial love_hate triangle[J]. Am J Phy_siol Cell Physiol, 2004,287(4):C817-C833.

  基金项目:广东省自然科学基金资助(04020247,5008352)

  作者简介:徐锡金(1960-),男,湖北省武汉市人,博士,副教授,主要从事神经损伤修复的研究。

  1汕头大学医学院中心实验室,广东  汕头  515041;

  2Charles Allen Laboratories, Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, 77555, USA

医思倍微信
医思倍移动端
医思倍小程序