微生态制剂美常安对高脂饮食所致的脂肪肝炎TNFα和PPARγ的影响
发表时间:2010-11-04 浏览次数:386次
作者:于洪波,彭海英,戴 林,左 中 作者单位:解放军第210医院 1.消化内科,2. 病理科,辽宁 大连 ;3.解放军沈阳军区大连疗养院,辽宁 大连
【摘要】 目的 探讨TNFα和PPARγ在高脂饮食所致脂肪性肝炎形成中的作用,微生态制剂防治非酒精性脂肪性肝炎的作用机制。方法 雄性SD大鼠40只随机分为4组,每组10只。正常组普通饲料喂养;模型组喂高脂饲料,微生态制剂治疗组分别在喂饲高脂饲料12周后予美常安灌胃;饮食治疗组在喂饲高脂饲料12周后改为普通饲料喂养,16周末处死各组大鼠,测定血清转氨酶 (ALT、AST) 和肿瘤坏死因子α(TNFα)水平, 肝匀浆丙二醛 (MDA) 含量,超氧化物歧化酶 (SOD) 活性,观察肝组织学改变,免疫组化法测PPARγ表达。结果 模型组大鼠肝组织MDA含量与正常组比较,(8.38±1.32 μmol/g vs 5.08±0.91 μmol/g,P<0.01)明显增高, 血清TNFα水平(2.48±0.50 μg/L vs 0.82±0.18 μg/L, P<0.01)明显增高, 而SOD活性 (148±26 kNU/gt vs 198±25 kNU/gt, P<0.01)明显降低,肝脏的脂肪变性程度和炎症活动度计分均显著增高(P<0.05), PPARγ阳性表达细胞明显减少(P<0.05), 但与脂肪变性的严重程度无关,而与肝组织的炎症活动度呈负效关系。微生态制剂治疗组各项指标较模型组有明显改善 (P<0.05 或P<0.01),而饮食治疗组大鼠肝脏病理学仍呈轻中度脂肪变性,炎症活动度计分较正常组显著增高(P<0.05),余各项指标与模型组比较无显著差异。结论 微生态制剂美常安可能通过减少TNFα的产生,增加PPARγ表达等方面来改善胰岛素抵抗,抗脂质过氧化和抑制炎症反应。
【关键词】 微生态制剂;TNFα;PPARγ;非酒精性脂肪性肝炎
Effects of Microbial Drug on Tumor Necrosis Factoralpha and Peroxisomal Proliferatoractivated Receptorγ in Rat Livers with Steatohepatitis Induced by Highfat Diets
Yu HongBo1, Peng Haiying3, Dai Lin1, Zuo Zhong2 (1. Department of Gastroenterology; 2. Department of Pathology, PLA No.210 Hospital, Dalian 116021, China; 3. Dalian Sanatorium of Shenyang Military Region, Dalian 116013, China)
Abstract: Objective To explore the role of tumor necrosis factoralpha (TNFα) and peroxisomal proliferatoractivated receptorγ (PPARγ) in the establishment of steatohepatitis and the therapeutic mechanisms of microbial pharmaceutics (MP) in its treatment in rats fed by highfat diets.Methods Forty male Sprague Dawley rats were randomly assigned into four groups (n=10 in each group). Group A was fed with normal diets. The other three groups (Group B, C and D) were fed with highfat diets for 12 weeks. Group C was treated with microbial pharmaceuticals (named as“ lived combined B. subtilis and E. faecium entericcoated capsules”with a trade name “Meichangan”) and Group D turned to normal diets 12 weeks after. All the rats were executed at the end of 16 weeks. Blood samples were collected for detection of serum aspartate transaminase (AST), alanine aminotransferase (ALT) and TNFα, and liver tissues were obtained for detection of malondialdehyde (MDA) content, superoxide dismutase (SOD) activity and total antioxidative capacity (TAOC). Histological changes were observed under light microscope and PPARγ was detected by immuneohistochemistry. Results In comparison with that of Group A, the contents of MDA and TNFα of Group B were significantly increased (8.38±1.32 vs 5.08±0.91 μmol/g, P<0.01; 2.48±0.50 vs 0.82±0.18 μg/L, P<0.01) but the content of antioxide SOD was decreased significantly (148±26 vs 198±25 kNU/gt, P<0.01) and the severity of hepatic fatty degeneration was aggravated and the inflammation score was increased markedly (P<0.01). The number of PPARγ positive expression cells was decreased significantly, which was independent of severity of liver steatosis and was negatively correlated to inflammation activity in liver tissue. In comparison with that of Group B, the markers such as MDA, SOD, TNFα and PPARγ were all signif icantly improved in Group C, as well as the severity of fatty degeneration (P<0.05 or P<0.01). Slight or moderate fatty degeneration was observed and inflammation score was increased significantly in Group D when compared with that of Group A (P<0.05). Also in Group D, the other relative markers were not notably different from that of Group B.Conclusion Microbial pharmaceutical “Meichanganhas” the action of ameliorating insulin resistance, antilipid peroxidation and antiinflammation. The mechanisms may be related to decreasing the contents of TNFα and enhancing PPARγ expression.
Key words: microbial pharmaceutics; tumor necrosis factoralpha; peroxisomal proliferatoractivated receptorγ; nonalcoholic steatohepatitis
非酒精性脂肪肝炎(nonalcoholic steatohepatitis,NASH)是一种与酒精性脂肪肝炎相类似的病理学状态[1~2],其发病率逐年增高[3],且研究表明其是隐源性肝硬化的重要病因[4~5],甚至可发展为肝癌[6~8],但其发病机制尚不十分明确[7]。目前临床上药物治疗效果尚不理想[1]。本研究通过高脂饮食建立NASH大鼠模型,检测肿瘤坏死因子α(TNFα)及过氧化物酶体增殖物激活受体γ(PPARγ)的表达并应用微生态制剂(美常安)干预,观察其对TNFα和PPARγ表达的影响,以进一步探讨其防治NASH的作用机制。
1 材料和方法
1.1 材料 雄性SD大鼠 40只,体重(150±10)g,购自大连医科大学实验动物中心。微生态制剂美常安,由北京韩美药品有限公司提供,是含枯草杆菌、肠球菌二联活菌肠溶胶囊。胆固醇购自上海伯奥生物工程公司,猪油自备。超氧化物歧化酶(SOD)、丙二醛(MDA)等试剂盒购自南京建成生物工程公司。TNFα酶免测定试剂盒购自华美生物工程公司;PPARγ多抗及免疫组化SABC试剂盒购自武汉博士德公司。
1.2 方法 大鼠普通饲料喂养1周后,随机分为4组(n=10)。正常组普通饲料喂养;模型组喂高脂饲料(880 g/kg 普通饲料+100 g/kg 猪油+20 g/kg 胆固醇);微生态制剂治疗组在喂饲高脂饲料12周后予美常安100 mg/(kg·d)灌胃, 1次/d,其他组以相同剂量蒸馏水(5 ml)灌胃;饮食治疗组在喂饲高脂饲料12周后改为普通饲料喂养。各组大鼠自由进食、进水,分笼(每笼5只)饲养于(20±2)℃、明暗各12 h的动物实验室内。16周末处死各组大鼠。方法为禁食12 h,乙醚麻醉,下腔静脉采血后处死,迅速取出肝脏,按常规制备血清、肝匀浆、肝组织石蜡切片标本,肝组织于-70℃低温保存。(1)采用全自动生化分析仪测定血清ALT,AST;(2)肝匀浆测定MDA含量(改进后的硫代巴比妥酸荧光法),SOD活性 (改良的盐酸羟胺法);(3)测定血清TNFα水平(酶联免疫法);(4)肝脏病理学检查,光镜下评估脂肪变性程度和炎症活动度;(5)免疫组化法测PPARγ表达。
1.3 统计学方法 计量资料以均数±标准差(x±s)表示,各组间实验数据采用两样本均数的t检验;等级资料采用秩和检验。
2 结果
2.1 血清ALT,AST变化 与正常组比较,模型组及饮食治疗组ALT,AST显著增高(P<0.01);美常安组ALT,AST和模型组比较显著下降 (P<0.01),详见表1。表1 各组大鼠血清ALT,AST变化的比较与正常组比较,①P<0.01;与模型组比较,②P<0.01
2.2 肝MDA含量,SOD活性和血清TNFα变化 与正常组比较,模型组和饮食治疗组肝MDA含量和血清TNFα显著增高,SOD活性下降明显 (P<0.01),美常安组血清TNFα明显增高(P<0.01);与模型组比较,美常安组肝MDA含量和血清TNFα显著降低,SOD活性明显增高(P<0.01),详见表2。 表2 各组大鼠肝MDA含量,SOD活性和血清TNFα与正常组比较,①P<0.01;与模型组比较,②P<0.01
2.3 肝脏病理学变化 光镜下评估肝脂肪变性程度[9]和炎症活动度[10]。与正常组相比,模型组大鼠肝脂肪变性程度明显加重(P<0.05),炎症活动度计分显著增加(P<0.05);美常安组大鼠肝脂肪变性程度和炎症活动度计分较模型组明显降低 (P<0.05),与正常组比较无明显差异(P>0.05);而饮食治疗组肝脂肪变性程度较模型组有所减轻,但两者间差异无统计学意义(P>0.05),而其炎症活动度计分较正常组明显增高(P<0.05) ,详见表3~4。
2.4 PPARγ免疫组化 免疫组化PPARγ染色阳性表达部位位于肝细胞胞浆内,呈粽褐色颗粒状。正常组见弥漫性阳性表达,在腺泡3区最强,并从3区向2区弥散;与正常组相比,模型组PPARγ阳性表达细胞明显减少(P<0.05), 但与脂肪变性的严重程度无关, 而与肝组织的炎症表3 各组大鼠肝脂肪变性程度表4 各组大鼠肝组织炎症活动度计分 活动度呈负效关系; 与模型组相比,美常安组PPARγ阳性表达细胞明显增多(P<0.05),详见表5。 表5 各组PPARγ表达与正常组比较,※P<0.05;与模型组比较,△P<0.05
3 讨论
“二次打击”(two hits)理论[8]认为首次打击主要是胰岛素抵抗,可导致肝细胞脂肪变性;二次打击主要为各种原因引起的氧应激或脂质过氧化损伤,引起脂肪性肝炎。肝内炎症反应多表现为TNFα等炎性介质的释放。本研究发现模型组大鼠血清TNFα水平较正常对照组显著增高,且TNFα水平从第12周末开始持续进行性增高,证实了TNFα为非酒精性脂肪肝发病过程中胰岛素抵抗的一个关键性介质[11],同时TNFα可通过增强自由基的产生和脂质过氧化等方面促进脂肪性肝炎的发生[12]。SOD是机体抗氧化损伤防御体系中的最重要的抗氧化酶之一,MDA是一种最具代表性脂质过氧化物。本研究发现与正常组比,模型组大鼠出现明显的脂肪变性,肝组织炎细胞浸润,同时转氨酶增高显著,提示病变发展为脂肪性肝炎阶段;肝组织MDA含量明显增高,SOD活性显著降低,表明氧应激和脂质过氧化在肝组织脂肪变性后炎症的过程中发挥重要作用。过氧化物酶体增殖物激活受体γ(PPARγ)是一类由配体激活的核受体转录因子。PPARγ不仅与脂肪细胞的分化与成熟、胰岛素抵抗和调节血糖相关,还与肝脏炎症反应的发生与调控有关[13]。本研究发现模型组大鼠PPARγ表达较正常组显著下降,表明高脂饮食可抑制PPARγ活性。提示PPARγ表达减弱在NASH大鼠模型脂质过氧化、炎症介质释放、肝组织损伤等方面起着关键作用。本研究还发现,PPARγ表达部位在腺泡3区最强,并从3区向2区弥散,可能与肝内微循环有关。
本研究所应用的微生态制剂美常安,是含枯草杆菌、肠球菌二联活菌肠溶胶囊。与模型组比较,美常安组大鼠肝组织SOD活性升高明显, MDA含量显著下降,表明美常安具有抗脂质过氧化反应等作用,这与国内外研究结果一致[14~15]。美常安组血清TNFα水平明显降低,同时组织学示炎症反应明显减轻,PPARγ表达明显增强,表明美常安具有减轻肝脏炎症反应的作用,进一步证实了PPARγ具有抗氧化和抗炎的作用[16~17]。而饮食治疗组上述各项指标与模型组比较均无明显差异。
总之,微生态制剂美常安可能通过减少TNFα的产生,增加PPARγ表达等方面来改善胰岛素抵抗,抗脂质过氧化和抑制炎症反应,为临床上药物治疗NASH提供了一个新的途径和方法。
【参考文献】
[ 1] Ludwig J,Viggiano TR,McGill DB,et al. Nonalcoholic steatohepatitis.Mayo Clinic experiences with a hitherto unnamed disease[J]. Mayo Clin Proc,1980,55:434-438.
[ 2] Nonalcoholic steatohepatitis clinical research network[J]. Hepatology,2003,37(2):244.
[ 3] Ayata G, Gordon FD, Lewis WD, et al. Cryptogenic cirrhosis: clinicopathologic findings at and after liver transplantation[J]. Hum Pathol ,2002,33(11):1098-1104.
[ 4] Ong JP,Younossi ZM. Is hepatocellular carcinoma part of the natural history of nonalcoholic steatohepatitis[J]?Gastroenterology, 2002,123(1):375-378.
[ 5] Sanyal AJ. Mechanisms of Disease:pathogenesis of nonalcoholic fatty liver disease[J]. Nat Clin Pract Gastroenterol Hepatol, 2005,2:46-53.
[ 6] Ong JP,Younossi ZM. Approach to the diagnosis and treatment of nonalcoholic Fatty liver disease[J]. Clin Liver Dis,2005,9:617-634.
[ 7] Sanyal AJ. AGA technical review on nonalcoholic fatty liver disease[J].Gastroenterology,2002,123:1705-1725.
[ 8] Day CP,James O.Steatohepatitisa tale of two“hits”[J]?Gastroenterology, 1998,114:842-845.
[ 9] Medina J, FernandezSalazar LI, Garcia-Buey L, et al.Approach to the Pathogenesis and Treatment of Nonalcoholic Steatohepatitis[J]. Diabetes Care,2004,27:2057-2066.
[10] 王泰龄,刘 霞,周元平,等. 慢性肝炎炎症活动度及纤维化程度计分方案[J].中华肝脏杂志,1998;6(4):195-197.
[11] Diehl AM.Tumor necrosis factor and its potential role in insulin resistance and nonalcoholic fatty liver disease[J].Clin Liver Disease, 2004,8(3):619-638.
[12] Lloyd SS,Chang AK,Tayloor FB,et al. Free radicalsan dsepticshokin primates,theroleof tumor necrosis factor[J].Free Radic Biol Med,1993,14(3):233.
[13] Kon K, Ikejima K, Hirose M. et al. Pioglitazone prevents earlyphase hepatic fibrogenesis caused by carbon tetrachloride[J]. Biochem Bilphys Res Commun,2002,291:55-61.
[14] Kone BC,Kuncewicz T,Zhang W,et al.Protein interactions with nitric oxide synthases: controlling the right time, the right place, and the right amount of nitric oxide[J]. Am J Physiol Renal Physiol,2003,285: F178-190.
[15] 袁杰利,傅晓丽,文 姝,等. 屎肠球菌活菌制剂的研究[J].中国微生态学杂志,2003,15(1): 20-21.
[16] Zhang X, Young HA. PPAR and immune systemWhat do we know[J]?Int Immunopharm acol,2002,2:1029-1044.
[17] Von Knethen A,Brthe B. Delayed activation of PPARγ by LPS and IFNγ attenuates the oxidative burst in macrophages[J]. FA SEB J,2001,15:535-544.