当前位置:首页 > 文献频道 > 临床内科学 > 文献详细

《神经外科学》

NMDA受体3A亚基在中枢神经系统发育中的作用

发表时间:2012-03-26  浏览次数:604次

  作者:罗娅丽综述,黑明燕审校 作者单位:(中南大学湘雅三医院儿科,湖南 长沙 410013)

  【关键词】 NMDA受体;NR3A亚基;中枢神经系统;发育;综述文献

  N甲基-D-天冬氨酸(NMDA)受体是谷氨酸盐受体家族中的一种,是一种兴奋性神经递质谷氨酸的离子型受体, 与许多复杂的生理和病理机制有关,如突触的可塑性、长时程增强作用(long-term potentiation, LTP)、学习和记忆、兴奋性神经毒性、神经退行性变性等。NMDA受体的过度激活和机能减退都会导致疾病,其中NMDA受体的激活可导致神经兴奋毒性的增加[1-3],从而导致多种神经紊乱性疾病,如亨廷顿病[4,5]、帕金森疾病[6]、阿茨海默病[7,8]、慢性酒精暴露[9,10]、中风[11]、癫痫[12]、外伤性精神损伤[13],等。NMDA受体是由亚基组成异聚体[14],NMDA亚基分别为NR1亚基,NR2亚型(包括NR2A-2D四种亚基),NR3亚型(包括NR3A、3B两种亚基),其中NR1亚基是基本的功能单位,NR2亚型在很大程度上决定了受体的性质,而NR3亚型在NMDAR中主要发挥抑制作用[15]。与NR1及NR2亚基比较,两种NR3亚基具有不同的电生理学特性,其中NR3A亚基能对NMDA受体产生一系列反应,包括减小流入电流幅度,减少对Ca2+渗透性,对通道微孔阻滞剂Mg2+和MK-801的更低敏感性,以及配基结合位点对甘氨酸比对谷氨酸具有更高的亲和性[16]。本文围绕NMDA受体3A亚单位在中枢神经系统发育中的作用进行综述。

  1 NMDA受体3A亚单位的结构与其电生理功能

  1.1 NMDA受体3A亚单位(NR3A)的结构

  NMDA受体的7种亚基有以下共同的结构特征:细胞外的N-末端区域,S1S2配基结合区域(ligand binding domain, LBD),膜内的形成离子通道的区域,以及延伸的细胞内的C-末端尾巴[17]。人类成熟的NR3A亚基显示含有1089个氨基酸,信号肽含有26个氨基酸。人类NR3A含有10个认定的糖苷化位点(比大鼠少1个),3个潜在的Ca2+位点/钙调蛋白依赖性蛋白激酶II位点(比大鼠多1个),6个潜在的蛋白激酶C位点(与大鼠相同),在这些当中有一部分潜在的蛋白激酶位点有重叠。

  1.2 NR3A的电生理功能

  NR3亚基可单独与NR1亚基形成功能性的甘氨酸受体[16]。在卵母细胞中NR1和NR3亚基组成的二聚体在没有NR2亚基的情况下,可形成甘氨酸门控通道,该通道不能被Mg2+、NMDAR阻抗剂APV(2-amino-5-phosphonovalerate)所阻断,而NR1和NR2组成的二聚体却能被其阻断[18],而NR3A亚基具有修饰NMDA受体通道的性质,能抑制NMDA受体的电生理敏感度,有研究显示含NR3亚基的NMDA受体对Mg2+离子的敏感性、Ca2+离子通透性以及NMDA诱导电流峰值均低于不含有NR3A亚基的NMDA受体[19-21]。

  NR3A亚基与NR1亚基、NR3B亚基与NR1亚基共表达组成的二聚体,在HEK293细胞中不产生甘氨酸门控电流[22],而在卵母细胞中能产生甘氨酸门控电流[23],且前者的研究还发现NR3A和NR3B亚基与NR1亚基共表达组成的三聚体亦可产生甘氨酸门控电流[22],但该电流明显小于由NR1亚基和NR2亚基组成的二聚体引起的甘氨酸门控电流[19],其可能的机制是NR3A亚基与NR1亚基、NR3A亚基与NR2亚基组成二聚体引起甘氨酸兴奋的通路,与NR1亚基和NR2亚基 组成的二聚体引起的NMDA受体复合物对钙渗透性,镁敏感性、药理学均不相同[19,21,24]。相对而言,由于含有NR3A的二聚体或三聚体引起的甘氨酸门控电流对钙离子不可渗透且对镁离子阻滞不敏感[25,26],因此更能保持神经元处于去极化状态,对神经突触传送起重要作用,这一特性是NR3A亚基在神经系统发育阶段起重要调节作用的物质基础。

  2 NR3A亚基在发育中的中枢神经系统中的表达

  2.1 NR3A在各发育阶段中枢神经系统中的表达存在物种差异

  啮齿类动物是目前医学实验中最常采用的实验动物种类之一,但值得注意的是,NR3A在啮齿类动物中枢神经系统中的表达与灵长类动物(包括人类)存在物种差异。NR3A亚基在处于发育中的啮齿类动物脑神经元中(特别是在新大脑皮层、丘脑、杏仁核、菌丝层的神经元中)呈现高表达,而在成熟的啮齿类动物脑神经元中的表达则非常有限,在成熟啮齿类动物的大脑皮质神经元中几乎不表达[27],后者的研究显示,小鼠脑皮层NR3A的mRNA水平在出生后7~10 d达到高峰值,而在生后7~10 d这段时间,NMDA受体亚基的组成发生了重要的改变,即NR2A亚基表达上调,NR3A亚基和NR2D亚基的表达减少。恒河猴NR3A的mRNA在成年脑的主要部分都有表达,其高表达的区域是新大脑皮层,黑质,致密层,小脑,海马,杏仁核,丘脑和下丘脑[28]。在人类大脑中,无论是胎儿还是成年人,NR3A亚基在大脑中的分布都十分广泛,特别是在大脑皮层和皮层下神经元中的分布[29,30]。

  2.2 NR3A在中枢神经系统中的表达存在性别差异

  有研究报道NR3A亚基在成年雌性的中枢神经系统中的表达比雄性少,提示NR3A亚基的表达可能受到雌激素的调节,在进一步应用NR3A基因敲除小鼠进行相关机制研究时则发现,不含有NR3A亚基的雄性小鼠大脑神经元细胞的前脉冲抑制力降低,而不含有NR3A亚基的雄性小鼠大脑神经元细胞的前脉冲抑制力不受影响[31],提示雌激素可能是通过影响大脑神经元细胞的前脉冲抑制力发挥对NR3A表达的下调作用,引起中枢神经元功能减退。

  2.3 NR3A亚基在各发育阶段表达差异的可能机制

  Rana等发现[32]NR3A与NR1结合的高峰在生后第10天,而在成年期两者的结合则大大减少,这种含有NR3A的NMDAR复合体在时间和空间上的改变对于突触水平的调控起重要作用。另有研究报告显示,NR3A的表达在脑发育早期较高,而在生后3周大大降低[33,34],这种NR3A表达的减少与脑神经元突触前NMDA受体作用的丧失在时间上保持一致,说明含有NR3A的NMDA受体很可能是构成突触前NMDA受体兴奋活性的结构基础[35]。

  3 NR3A亚基的异常表达与中枢神经发育性疾病的关联

  3.1 NR3A与脑白质损伤

  越来越多的研究已经证实,中枢神经系统中神经胶质细胞的NMDA受体复合物也含有NR3A亚基[36-39],NR3A的含量在神经胶质细胞的髓磷脂中含量最丰富[39]。在缺血导致的脑白质损伤动物实验中[40,41],脑白质神经胶质细胞的损伤能被NMDA受体拮抗剂所减弱,说明脑白质神经胶质细胞的损伤至少在一定程度上是由NMDA受体的激活所导致的,且其损伤的机制是缺血导致该区域神经胶质细胞NMDA受体复合物中NR3A亚基表达减少、从而使这些神经胶质细胞缺乏对细胞内游离钙离子的足够缓冲作用、最终导致这些神经胶质细胞死亡,而NR3A对NMDAR激活有负性调节作用,能减少因NMDAR激活导致的髓磷脂损伤,减少神经胶质细胞的死亡。

  3.2 NR3A与缺氧缺血性神经损伤

  Nakanishi等[42]应用NR3A转基因小鼠和NR3A基因敲除小鼠的缺血缺氧损伤动物模型,研究NR3A亚基在未成熟脑神经细胞死亡中的作用,发现在缺血缺氧损伤时,NR3A亚基的存在能大大减少未成熟脑神经细胞的死亡,而不含有NR3A亚基的脑神经细胞则更容易发生细胞坏死。该小组同时还发现在成熟视网膜中心活性细胞具有较高NR3A亚基的表达,在缺血损伤过程中视网膜中心活性细胞的细胞内游离钙离子浓度低于中枢神经细胞,相对中枢神经细胞而言较不易受到NMDA兴奋性作用的损伤,并且向NR3A敲除小鼠的眼睛注射NMDA会杀死更多的视网膜活动中心细胞,这提示内生的NR3A是具有保护作用的。

  3.3 NR3A与记忆和学习困难

  神经生物学研究表明, 学习记忆形成的神经解剖学基础是神经元之间突触连接及传递的增强或减弱, 即突触可塑性,其机制包括长时程增强(Long-Term Potentiation, LTP)和长时程抑制(long-term depression,LTD),主要依赖于通过被激活的NMDA受体的钙离子内流,而影响神经细胞突触/棘的形成以及稳定性[43,44]。有研究发现,发育期NR3A亚基的下调与具有兴奋作用的突触前NMDA受体活性丧失有关,在新大脑皮层形成时期,含有NR3A的NMDA受体可有效调节突触前神经递质的释放,调节神经元可塑性[45]。NR3A基因敲除小鼠的大脑新皮层细胞发生了形态学改变,相对野生型小鼠具有更大量的神经元突触/棘[46]。NR3A亚基的存在能抑制中枢神经细胞突触/棘密度,提高NR3A水平能减少棘的形成和抑制NMDA受体的激活,抑制细胞外游离钙向细胞内的内流,从而减轻中枢神经细胞内游离钙离子的聚集,通过影响LTP和LTD而进一步影响神经元突触可塑性,影响学习和记忆功能[34]。突触和认知能力的不足都是源于持续的NR3A表达,因为NR3A的存在使突触在解剖和功能上都保持在一个较幼稚的状态,这种状态下LTP的产生、结构可塑性都难以实现,且不能支持长期记忆储存[47]。NR3A亚基就像一个制动器,能阻止神经元突触/棘的形成和抑制神经元突触可塑性,因此在出生后的早期神经元发育阶段,移除NR3A亚基也许是开启突触成熟、改善学习和记忆能力的关键所在[34]。

  3.4 NR3A与精神性疾病

  一项动物模型研究显示改变脑神经细胞NR3A亚基的表达,可导致突触成熟和清除之间的不平衡,重现了典型精神分裂症中学习记忆能力受损的问题[34]。在某些主要的精神疾患如双极相障碍、精神分裂症患者尸解病理检查发现[48],编译NR3A亚基的mRNA表达在这些患者大脑背外侧、额叶前部神经细胞中有显著改变,但是在相邻大脑结构神经细胞中却没有改变,双极相障碍患者的NR3A转录减少,精神分裂患者的NR3A转录则增加。在精神分裂疾病的大脑的背外侧前额叶(dorsal-lateral prefrontal cortex, DLPFC)区,NR3A亚基的表达升高[48],神经元棘密度减少[49]。由于NR3A亚基的表达可影响学习记忆能力的形成和巩固,结合上述研究中发现的精神分裂症患者大脑局部区域存在NR3A亚基表达的增加,因此,推断精神分裂症的记忆能力减退可能与该区域神经细胞NR3A亚基的过度表达密切相关。

  4 结语

  NMDA受体正常功能的维持,在中枢神经系统发育中具有重要作用,NMDA受体的过度激活与神经系统多种疾病有关。NR3A是NMDA受体亚基的一种,是NMDA受体电流的负调控子,具有改变NMDA受体对Ca2+通透性和对镁离子敏感性的作用,内源性NR3A能起保护神经元的作用,外源性补充NR3A亚基也可能成为多种中枢神经系统发育相关性疾病的潜在治疗点,而这需要更对NR3A亚基功能进行更多的研究。

  【参考文献】

  1 Yu XM, Groveman BR, Fang XQ, et al. The role of intracellular sodium(Na) in the regulation of calcium(Ca)-

  mediated signaling and toxicity[J]. Health (Irvine Calif),2010,2(1):8-15.

  2 Chen MJ, Peng ZF, Manikandan J, et al. Gene profiling reveals hydrogen sulphide recruits death signaling via the N-methyl-D-aspartate receptor identifying commonalities with excitotoxicity[J].J Cell Physiol, 2011,226(5):1308-1322.

  3 López-Menéndez C, Gascón S, Sobrado M, et al. Kidins220/ARMS downregulation by excitotoxic activation

  of NMDARs reveals its involvement in neuronal survival and death pathways[J].J Cell Sci,2009,122(19):3554-3565.

  4 Metzler M, Gan L, Mazarei G, et al. Phosphorylation of huntingtin at Ser421 in YAC128 neurons is associated with protection of YAC128 neurons from NMDA-mediated excitotoxicity and is modulated by PP1 and PP2A[J].J Neurosci,2010,30(43):14318-14329.

  5 Okamoto S, Pouladi MA, Talantova M, et al. Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin[J]. Nat Med,2009,15(12):1407-1413.

  6 Bonuccelli U, Del Dotto P. New pharmacologic horizons in the treatment of Parkinson disease[J].Neurology,2006,67:S30-38.

  7 Bicca MA, Figueiredo CP, Piermartiri TC, et al. The selective and competitive N-methyl-D-aspartate receptor antagonist, (-)-6-phosphonomethyl-deca-hydroisoquinoline-3-carboxylic acid, prevents synaptic toxicity induced by amyloid-βin mice[J].Neuroscience,2011,6:1238-1243.

  8 Karim Bordji, Javier Becerril-Ortega, Olivier Nicole, et al. Activation of extrasynaptic, but not synaptic, NMDA receptors modifies amyloid precursor protein expression pattern and increases amyloid- βProduction[J].J Neurosci,2010,30(47):15927-15942.

  9 Bernier BE, Whitaker LR, Morikawa H. Previous ethanol experience enhances synaptic plasticity of NMDA receptors in the ventral tegmental area[J].J Neurosci,2011,31(14):5205-5212.

  10 Kash TL, Baucum AJ, Conrad KL, et al. Alcohol exposure alters NMDAR function in the bed nucleus of the stria terminalis[J]. Neuropsychopharmacology, 2009,34(11):2420-2429.

  11 Sun X, Chan LN, Gong X, et al. N-methyl-D-aspartate receptor antagonist activity in traditional Chinese stroke medicines[J].Neurosignals, 2003,12(1):31-38.

  12 Frasca A, Aalbers M, Frigerio F, et al. Misplaced NMDA receptors in epileptogenesis contribute to excitotoxicity[J].Neurobiol Dis,2011,43(2):507-515.

  13 Arundine M, Tymianski M. Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury[J].Cell Mol Life Sci, 2004, 61:657-668.

  14 Palygin O, Lalo U, Pankratov Y. Distinct pharmacological and functional properties of NMDA receptors in mouse cortical astrocytes[J].Br J Pharmacol, 2011, 163(8):1755-1766.

  15 Nishi M, Hinds H, Lu HP , et al. Motoneuron - specific expression of NR3B, a novel NMDA-type glutamate receptor subunit shat work in a dominant-negative manner[J].J Neurosci, 2001, 21(23):185.

  16 Cavara NA, Hollmann M. Shuffling the deck anew: how NR3 tweaks NMDA receptor function[J].Mol Neurobiol, 2008, 38:16-26.

  17 Madden DR. The structure and function of glutamate receptor ion channels[J].Nat Rev,2002, 3:91-101.

  18 Chatterton JE, Awobuluyi M, Premkumar LS, et al. Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits[J].Natur, 2002, 415:793-798.

  19 Madry C, Mesic I, Bartholom

  ?倞 us I, et al. Principal role of NR3 subunits in NR1/NR3 excitatory glycine receptor function[J].Biochem Biophys Res Commun, 2007, 354:102-108.

  20 Perez-Otano I, Schulteis CT, Contractor A, et al. Assembly with the NR1 subunit is required for surface expression of NR3A-containing NMDA receptors[J]. J Neurosci, 2001,21:1228-1237.

  21 Matsuda K, Kamiya Y, Matsuda S, et al. Cloning and characterization of a novel NMDA receptor subunit NR3B: A dominant subunit that reduces calcium permeability[J]. Mol Brain Res, 2002,100:43-52.

  22 Smothers CT, Woodward JJ. Pharmacological characterization of glycine-activated currents in HEK 293 cells expressing N-methyl-D-aspartate NR1 and NR3 subunits[J]. J Pharmacol Exp Ther, 2007,322:739-748.

  23 Takeshi Takarada, Noritaka Nakamichi, Yuki Kambe, et al. Requirement of both NR3A and NR3B subunits for dominant negative properties on Ca2+ mobilization mediated by acquired N-methyl-D-aspartate receptor channels into mitochondria[J]. Neurochemistry International,2010,57:730-737.

  24 Sasaki YF, Rothe T, Premkumar LS, et al. Characterization and comparison of the NR3A subunit of the NMDA receptorin recombinant systems and primary cortical neurons[J]. J Neurophysiol, 2002, 87:2052-2063.

  25 Gallinat J, Gotz T, Kalus P, et al. Genetic variations of the NR3A subunit of the NMDA receptor modulate prefrontal cerebral activity in humans[J]. J Cogn Neurosci,2007,19:59-68.

  26 Jin C, Smothers CT, Woodward JJ. Enhanced ethanol inhibition of recombinant N-methyl-D-aspartate receptors by magnesium: role of NR3A subunits[J]. Ethanol Clin Exp Res,2008,32(6):1059-1066.

  27 Wong HK, Liu XB, Matos MF, et al. Temporal and regional expression of NMDA receptor subunit NR3A in the mammalian brain[J]. J Comp Neurol, 2002, 450: 303-317.

  28 Helena T, Mueller, James H. et al. Distribution of the NMDA receptor NR3A subunit in the adult pig-tail macaque brain[J]. Journal of Chemical Neuroanatomy,2005, 29: 157-172.

  29 Eriksson M, Nilsson A, Froelich-Fabre S, et al. Cloning and expression of the human N-methyl- D –aspartate receptor subunit NR3A[J].Neurosci Lett, 2002, 321: 177-181.

  30 Nilsson A, Eriksson M, Muly EC, et al. Analysis of NR3A receptor subunits in human native NMDA receptors[J]. Brain Res, 2007, 1186:102-112.

  31 Brody SA, Nakanishi N, Tu S, et al. A developmental influence of the N-methyl-D-aspartate receptor NR3A subunit on prepulse inhibition of startle[J]. Biol Psychiatry,2005, 57: 1147-1152.

  32 Al-Hallaq RA, Jarabek BR, Fu Z, et al. Association of NR3A with the N-Methyl-D-aspartate Receptor NR1 and NR2 Subunits[J].Mol Pharmacol, 2002, 62: 1119-1127.

  33 Henson M A, Roberts A C, Perez-Otano I, et al. Influence of the NR3A subunit on NMDA receptor functions[J]. Prog Neurobiol,2010, 91: 23-37.

  34 Roberts A C, Díez-García J, Rodriguiz RM, et al. Downregulation of NR3A-containing NMDARs is required for synapse maturation and memory consolidation[J]. Neuron, 2009, 63: 342-356.

  35 Corlew R, Wang Y, Ghermazien H, et al. Developmental switch in the contribution of presynaptic and postsynaptic NMDA receptors to long-term depression[J]. J Neurosci,2007, 27: 9835-9845.

  36 Lee MC, Ting KK, Adams S, et al. Characterisation of the expression of NMDA receptors in human astrocytes [J].PLoS One,2010,5(11):e14123.

  37 Paoletti P, Neyton J. NMDA receptor subunits: function and pharmacology[J]. Curr Opin Pharmacol,2007, 7: 39-47.

  38 Murugan M, Sivakumar V, Lu J, et al. Expression of N-methyl D-aspartate receptor subunits in amoeboid microglia mediates production of nitric oxide via NF-κB signaling pathway and oligodendrocyte cell death in hypoxic postnatal rats[J]. Glia,2011, 6:456-461.

  39 Salter MG, Fern R. NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury[J]. Nature, 2005, 438(7071): 1167-1171.

  40 Karadottir R, Cavelier P, Bergersen L H, et al. NMDA receptors are expressed in oligodendrocytes and activated in ischaemia[J]. Nature,2005,438:1162-1166.

  41 Micu I, Jiang Q, Coderre E, et al. NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia[J].Nature,2006, 439:988-992.

  42 Nakanishi N, Tu S, Shin Y, et al. Neuroprotection by the NR3A subunit of the NMDA receptor[J]. J Neurosci, 2009, 29:5260-5265.

  43 Bonhoeffer T. Morphological changes in dendritic spines associated with long-term synaptic plasticity[J]. Annu Rev Neurosci, 2001,24:1071-1089.

  44 Nikolaus J, Sucher Eric Yu, Shing Fai Chan, et al. Association of the Small GTPase Rheb with the NMDA Receptor Subunit NR3A[J]. Neurosignals, 2010, 18:203-209.

  45 Larsen RS, Corlew RJ, Henson MA, et al. NR3A-containing NMDARs promote neurotransmitter release and spike timing–dependent plasticity[J]. Nature Neuroscience,2011,14:338-344.

  46 Das S, Sasaki YF, Rothe T, et al. Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A[J]. Nature,1998,393: 377-381.

  47 Tong G, Takahashi H, Tu S, et al. Modulation of NMDA receptor properties and synaptic transmission by the NR3A subunit in mouse hippocampal and cerebrocortical neurons[J]. J Neurophysiol, 2008, 99: 122-132.

  48 Mueller HT, Meador-Woodruff JH.NR3A NMDA receptor subunit mRNA expression in schizophrenia, depression and bipolar disorder[J]. Schizophr Res, 2004, 71: 361-370.

  49 Glantz L A, Lewis D A. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia[J]. Arch Gen Psychiatry,2000,57:65-73.

医思倍微信
医思倍移动端
医思倍小程序