当前位置:首页 > 文献频道 > 临床内科学 > 文献详细

《肿瘤学》

GRP78核酸疫苗在非小细胞肺癌模型中的抗肿瘤作用研究

发表时间:2010-08-19  浏览次数:409次

  作者:李小彦,朱小庆,于志坚,黄 健 作者单位:南通大学附属医院肿瘤介入科, 南通 226001

  【摘要】 目的:研究GRP78核酸疫苗对非小细胞肺癌的预防作用及生存期影响。方法:将携带GRP78基因的真核表达载体肌肉内注射免疫C57BL/6小鼠,完成3次免疫后,接种小鼠非小细胞肺癌细胞(Tc-1),以此来观察该疫苗对非小细胞肺癌的预防作用及生存期影响。结果:免疫后的治疗组肿瘤生长体积小于对照组,平均生存期比对照组延长了25天,免疫细胞分泌细胞因子肿瘤坏死因子(TNF-α)、γ干扰素(IFN-γ)的水平和对靶细胞的杀伤率明显高于对照组。结论:GRP78核酸疫苗能够提高机体免疫细胞对非小细胞肺癌的杀伤能力,延缓肿瘤生长,延长生存期。

  【关键词】 非小细胞肺癌;GRP78;核酸疫苗

  Anti-tumor activity of GRP78 DNA vaccine on non-small cell lung carcinoma model

  LI Xiaoyan, ZHU Xiaoqing, YU Zhijian, et al. (Affiliated Hospital of Nantong University, Nantong 226001)

  [Abstract] Objective : To study the effect of anti-tumor activity on prophylaxis and survival period by administering GRP78 DNA vaccine. Methods : The eukaryotic expression plasmid containing GRP78 gene was injected intramuscularly into hind leg of C57BL/6 female mice. After three vaccinations, they were s.c. inoculated with lethal doses of Tc-1 tumor cells. The tumor volumes were measured and survival times were recorded for each individual mouse after tumor challenge. Results : The tumor volumes of treatment group were less than those of control groups. Moreover, compared with control groups, the average survival time of treatment group was prolonged significantly. In addition, the level of TNF-αand IFN-γsecreted by the splenocytes and the cytotoxicity of treatment group was higher than that of control groups. Conclusion : GRP78 DNA vaccine can enhance anti-tumor activity, reduce tumor volume and prolong survival time.

  [Key words] Non-small cell lung carcinoma;GRP78;DNA vaccine

  葡萄糖调节蛋白-78(glucose-regulated protein 78,GRP78)为内质网分子伴侣蛋白,分子量78 kD,属于HSP70家族成员,由于最初在低糖培养条件下发现它高表达而得名。GRP78介导新生蛋白的加工成熟,防止新生多肽的聚集、错误折叠并保持其构象稳定[1,2]。在热休克、低糖、低氧、过氧化物增多等应激状态下,内质网新生蛋白会发生错误折叠,这激活了细胞内的未折叠蛋白反应(unfolded protein response,UPR)[3],通过活化的ATF6作用于GRP78启动子,进一步上调了GRP78基因的转录活性,其表达量可提高10~25倍左右[4],另外GRP78还能转移内质网腔内的错误折叠蛋白,保持细胞在应激状态下蛋白质合成的继续[5]。

  肺癌是目前在城市居民中肿瘤发病率和死亡率位居首位的一种常见肿瘤,其中非小细胞肺癌占肺癌发病率的80%左右。Shin BK等[6]利用质谱技术在A549非小细胞肺癌细胞株中发现GRP78高表达,Koom?覿gi R等[7]发现非小细胞肺癌细胞中高表达的GRP78不仅与肿瘤耐药有关,还与肿瘤血管生成相关。由于GRP78在正常组织细胞是低表达的[8],因此,GRP78可以作为一个新的肿瘤细胞靶抗原。

  本文运用了GRP78核酸疫苗来免疫C57BL/6小鼠,完成3次免疫后,接种小鼠非小细胞肺癌细胞(Tc-1),以此来观察该疫苗对非小细胞肺癌的预防作用及生存期影响。

  1 材料与方法

  1.1 材料

  1.1.1 细胞系 小鼠非小细胞肺癌细胞株Tc-1为本室保存。

  1.1.2 动物 C57BL/6小鼠,6~8周,雌性,购自斯莱克公司,饲养环境为SPF级。

  1.1.3 试剂 质粒pcDNA3.1和DH5α为本室保存。限制性内切酶BamH I、Xba I及PrimeScript逆转录酶、PrimeSTAR热启动DNA聚合酶、T4 DNA连接酶均购自TaKaRa公司。RNA抽提使用RNeasy Mini kit (Qiagen)。质粒小量抽提和胶回收使用Omega公司产品。质粒大量抽提使用Endotoxin-free Maxi Kit(Qiagen)。肿瘤坏死因子α(TNF-α)、γ干扰素(IFN-γ),ELISA试剂盒(R&D systems,Minneapolis,MN)。LDH非放射性细胞毒检测试剂盒购自Promega(Cytotox 96(r) non-radioactive cytotoxicity assay)。细胞培养液和胎牛血清使用Hyclone产品,新生牛血清为PAA产品。

  1.2 方法

  1.2.1 细胞培养 Tc-1肿瘤细胞采用DMEM培养液,10%(V/V)FBS,100 U/ml青霉素,100 μg/ml链霉素,37 ℃、5%CO2饱和湿度下培养。

  1.2.2 引物设计和基因克隆 小鼠GRP78基因引物设计:

  上游:5'-CTCGGATCCACCATGATGAAGTTCACTGTGGTG-3';

  下游:5'-TGCTCTAGAGCTCAACTCATCTTTTTCTG ATG-3',分别用BamH I和Xba I双酶切后连入pcDNA3.1,定名为pcDNA3.1-GRP78,菌液送Invitrogen公司测序。

  1.2.3 动物免疫 小鼠共分3组,每组5只:pcDNA3.1-GRP78组、pcDNA3.1空载体组和PBS组,分别于每只小鼠后腿肌肉内注射pcDNA3.1-GRP78 100 μg或pcDNA3.1空载体100 μg或PBS100 μl,每3周1次,共免疫3次。

  1.2.4 肿瘤测量 第3次免疫结束后第7天于小鼠右侧腋部皮下接种Tc-1细胞1×106,接种后第6天使用游标卡尺测量肿瘤大小,每两天测量1次,测量至对照组出现死亡为止。

  1.2.5 细胞因子的检测 第3次免疫结束后第7天取小鼠脾脏细胞,每孔2×106脾脏细胞培养于96孔圆底板中,3复孔,每孔加入1×105照光后的Tc-1细胞,培养72 h,收集上清用ELISA试剂盒检测TNF-α、IFN-γ的浓度。

  1.2.6 LDH杀伤实验 根据Promega公司Cytotox 96(r) non-radioactive cytotoxicity assay方法,分别收集pcDNA3.1-GRP78组、pcDNA3.1空载体组和PBS组小鼠脾脏细胞和靶细胞Tc-1,用PBS洗3遍后,重悬于培养液中,按1∶1、5∶1、10∶1、20∶1、40∶1的比例,与相同数量的肿瘤细胞混合(肿瘤细胞数为1×104/孔),加入96孔圆底板,分设4复孔,并设5个对照:靶细胞最大释放对照;靶细胞自发释放对照;效应细胞自发释放对照;培养基对照和容积控制对照。总体积100 μl/孔,37 ℃、5%CO2饱和湿度下培养4 h,250 g离心5 min,吸出上清50 μl/孔置于新的96孔平底板,每孔加50 μl重组底物混合液,避光,室温孵育30 min。此后每孔加入50 μl终止液,吸管去除大气泡,1 h内测OD490,计算杀伤效率:杀伤率(%)=(实验孔-效应细胞的自发释放一靶细胞的自然释放)/(靶细胞的最大释放一靶细胞的自发释放)×100%。

  1.2.7 荧光定量PCR 从pcDNA3.1-GRP78组、pcDNA3.1空载体组和PBS组小鼠分离脾脏细胞,加入终浓度为100 μg/mlTc-1裂解物,完全培养基,24孔板培养72 h后收集细胞,用RNeasy Mini Kit(Qiagen)提取总RNA,用PrimeScript逆转录酶(TaKaRa) 合成单链cDNA。以SYBR Green master mix(Applied Biosystems)为材料用实时定量PCR的方法从基因表达水平检测的TNF-α、IFN-γmRNA表达情况。具体步骤为50 ℃ 2 min,95℃ 10min,95℃ 15 s,60 ℃ 60 s,共40个循环。用ABI 7500 system SDS software分析数据。用小鼠β-actin作为内源性对照进行样品标准化。PCR引物对序列为:

  IFN-γ上游5'-TCAAGTGGCATAGATGTGGAAGAA-3';下游5'-TGGCTCTGCAGGATTTTCATG-3';

  小鼠TNF-α上游5'-GACGTGGAACTGGCAGAAGAG-3';下游5'-GCCACAAGCAGGAATGAGAAG-3';

  小鼠β-actin上游5'-TGTCCACCTTCCAGCAGATGT-3';下游5'-AGCTCAGTAACAGTCCGCCTAGA-3'。

  2 结 果

  2.1 pcDNA3.1-GRP78载体构建 将Tc-1非小细胞肺癌细胞裂解抽提总RNA,逆转录成cDNA行PCR,由此克隆了C57BL/6小鼠来源的GRP78基因,并将其克隆至pcDNA3.1中,定名为pcDNA3.1-GRP78,测序结果与GenBank完全一致。

  2.2 pcDNA3.1-GRP78免疫后非小细胞肺癌生长体积和生存期变化 经pcDNA3.1-GRP783次免疫后,用非小细胞肺癌细胞株Tc-1皮下注射检测免疫效果。结果显示经pcDNA3.1-GRP78免疫后的肿瘤生长体积平均大小在第32天时是对照组的68%(图1),并且生存期得到显著延长,pcDNA3.1-GRP78组的平均生存期比对照组延长了25天(图2)。

  2.3 pcDNA3.1-GRP78免疫后脾脏细胞中细胞因子的变化水平 pcDNA3.1-GRP78免疫后脾脏中免疫细胞的分泌细胞因子TNF-α、IFN-γ的水平发生了变化。运用荧光定量PCR检测脾脏细胞TNF-α、IFN-γ mRNA的表达水平,结果显示pcDNA3.1-GRP78组脾脏细胞的TNF-α mRNA表达是pcDNA3.1组的3.4倍(图3);IFN-γ mRNA表达是pcDNA3.1组的2.9倍(图4)。运用ELISA检测细胞因子蛋白表达水平,结果也显示pcDNA3.1-GRP78组的TNF-α、IFN-γ明显高于其它两组(图5)。这反应了经pcDNA3.1-GRP78免疫后小鼠免疫细胞的功能得到了提高。

  2.4 pcDNA3.1-GRP78免疫后的免疫细胞对非小细胞肺癌的杀伤情况 将不同组3次免疫后的小鼠取脾脏细胞与Tc-1共培养,运用LDH非放射性细胞毒检测试剂盒来检测免疫后的效应细胞对非小细胞肺癌的杀伤情况,结果显示在E/T比例为40∶1时pcDNA3.1-GRP78免疫组的杀伤率为37.6%(图6),而pcDNA3.1组和PBS组对靶细胞的杀伤率分别为7.1%和5.6%。

  3 讨 论

  GRP78属热休克蛋白70家族,参与细胞内正常蛋白质的折叠组装与错误折叠蛋白的降解,由于肿瘤细胞的低氧代谢、糖酵解、胞内低pH值以及蛋白质错误折叠增加等原因造成了GRP78的高表达。肿瘤细胞GRP78的高表达对其自身具有重要的保护作用。首先,GRP78能够保护肿瘤细胞免受因应激因素所导致的凋亡[11],抑制GRP78的表达将会导致肿瘤细胞凋亡[2];其次,GRP78可以降低细胞毒性T细胞对肿瘤细胞的杀伤力[9,10,12,13],并减轻TNF-α诱导的细胞凋亡效应[10,14];再者,GRP78具有促进肿瘤细胞增殖的作用,高表达GRP78的肿瘤提示恶性程度增加[15~17];最后,GRP78还能够诱导肿瘤细胞对多种化疗药物产生耐药[18~20]。

  由于GRP78在正常组织细胞内呈低水平表达[8],因此,GRP78一般难以诱导机体的淋巴细胞产生免疫效应;而肿瘤细胞虽然高表达GRP78,但由于其具有较强的诱导免疫耐受作用,因而也无法对此产生免疫力。本文通过携带GRP78基因的真核表达质粒来免疫健康小鼠,该质粒会在小鼠注射部位的局部肌肉细胞内过高地表达GRP78蛋白,表达后的GRP78蛋白可以通过专职抗原递呈细胞(APC)的交叉递呈来诱导激活CD8+T杀伤性淋巴祖细胞(CTLp),激活的肿瘤抗原特异性CTLp发生克隆扩增,其数量会呈指数级增长,它们分布于肿瘤组织、淋巴器官及外周血中,起到免疫监视作用。而肿瘤细胞自身过表达的GRP78蛋白会经内源性抗原加工途径分解成不同多肽,并由MHC I类分子递呈于肿瘤细胞表面,作为肿瘤特异性抗原肽-MHC I类复合物被激活的肿瘤抗原特异性CTL所识别并介导杀伤作用。GRP78核酸疫苗对非小细胞肺癌的动物实验初步显示该疫苗能够提高机体免疫细胞杀伤能力,延缓肿瘤生长,延长生存期。这为今后的GRP78核酸疫苗的研究提供了实验基础。

  【参考文献】

  [1] Dong D, Ni M, Li J, et al. Critical role of the stress chaperone GRP78/BiP in tumor proliferation, survival, and tumor angiogenesis in transgene-induced mammary tumor development[J]. Cancer Res,2008,68(2):498-505.

  [2] Park HR, Tomida A, Sato S, et al. Effect on tumor cells of blocking survival response to glucose deprivation[J]. J Natl Cancer Inst,2004 ,96(17):1300-1310.

  [3] Li J, Lee AS. Stress induction of GRP78/BiP and its role in cancer[J]. Curr Mol Med, 2006 ,6(1):45-54.

  [4] Yang GH, Li S, Pestka JJ. Down-regulation of the endoplasmic reticulum chaperone GRP78/BiP by vomitoxin (Deoxynivalenol)[J]. Toxicol Appl Pharmacol,2000,162(3):207-217.

  [5] Yang Y, Turner RS, Gaut JR. The chaperone BiP/GRP78 binds to amyloid precursor protein and decreases Abeta40 and Abeta42 secretion[J]. J Biol Chem,1998,273(40):25552-25555.

  [6] Shin BK, Wang H, Yim AM,et al. Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function [J]. J Biol Chem,2003 ,278(9):7607-7616.

  [7] Koom?覿gi R, Mattern J, Volm M.Glucose-related protein (GRP78) and its relationship to the drug-resistance proteins P170, GST-pi, LRP56 and angiogenesis in non-small cell lung carcinomas[J]. Anticancer Res,1999,19(5B):4333-4336.

  [8] Arap MA, Lahdenranta J, Mintz PJ,et al. Cell surface expression of the stress response chaperone GRP78 enables tumor targeting by circulating ligands[J]. Cancer Cell,2004,6(3):275-284.

  [9] Liberman E, Fong YL, Selby MJ, et al. Activation of the grp78 and grp94 promoters by hepatitis C virus E2 envelope protein[J]. J Virol,1999,73(5):3718-3722.

  [10] Sugawara S, Takeda K, Lee A, et al. Suppression of stress protein GRP78 induction in tumor B/C10ME eliminates resistance to cell mediated cytotoxicity[J]. Cancer Res,1993;53(24):6001-6005.

  [11] Miyake H, Hara I, Arakawa S, et al. Stress protein GRP78 prevents apoptosis induced by calcium ionophore, ionomycin, but not by glycosylation inhibitor, tunicamycin, in human prostate cancer cells[J]. J Cell Biochem,2000,77(3):396-408.

  [12] Wang M, Wang P, Liu YQ, et al. The immunosuppressive and protective ability of glucose-regulated protein 78 for improvement of alloimmunity in beta cell transplantation[J]. Clin Exp Immunol,2007,150(3):546-552.

  [13] Wang M, Zhao XR, Wang P, et al. Glucose regulated proteins 78 protects insulinoma cells (NIT-1) from death induced by streptozotocin, cytokines or cytotoxic T lymphocytes[J]. Int J Biochem Cell Biol,2007,39(11):2076-2082.

  [14] Sugawara S, Nowicki M, Xie S, et al. Effects of stress on lysability of tumor targets by cytotoxic T cells and tumor necrosis factor[J]. J Immunol,1990,145(6):1991-1998.

  [15] Jamora C, Dennert G, Lee AS.Inhibition of tumor progression by suppression of stress protein GRP78/BiP induction in fibrosarcoma B/C10ME[J]. Proc Natl Acad Sci USA,1996,93(15):7690-7694.

  [16] Fernandez PM, Tabbara SO, Jacobs LK,et al. Overexpression of the glucose-regulated stress gene GRP78 in malignant but not benign human breast lesions[J]. Breast Cancer Res Treat,2000,59(1):15-26.

  [17] Song MS, Park YK, Lee JH, et al. Induction of glucose-regulated protein 78 by chronic hypoxia in human gastric tumor cells through a protein kinase C-epsilon/ERK/AP-1 signaling cascade[J]. Cancer Res,2001,61(22):8322-8330.

  [18] Dong D, Ko B, Baumeister P, et al. Vascular targeting and antiangiogenesis agents induce drug resistance effector GRP78 within the tumor microenvironment[J]. Cancer Res,2005,65(13): 5785-5791.

  [19] Reddy RK, Mao C, Baumeister P,et al. Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors: role of ATP binding site in suppression of caspase-7 activation[J]. J Biol Chem,2003,278(23):20915-20924.

  [20] Chatterjee S, Cheng MF, Berger RB, et al. Effect of inhibitors of poly(ADP-ribose) polymerase on the induction of GRP78 and subsequent development of resistance to etoposide[J]. Cancer Res,1995,55(4):868-873.

医思倍微信
医思倍移动端
医思倍小程序